MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen2 Structured version   Unicode version

Theorem iskgen2 19263
Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
iskgen2  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)

Proof of Theorem iskgen2
StepHypRef Expression
1 kgentop 19257 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
2 kgenidm 19262 . . . 4  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  =  J )
3 eqimss 3519 . . . 4  |-  ( (𝑘Gen `  J )  =  J  ->  (𝑘Gen `  J )  C_  J )
42, 3syl 16 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  C_  J )
51, 4jca 532 . 2  |-  ( J  e.  ran 𝑘Gen  ->  ( J  e.  Top  /\  (𝑘Gen `  J
)  C_  J )
)
6 simpr 461 . . . 4  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  C_  J
)
7 kgenss 19258 . . . . 5  |-  ( J  e.  Top  ->  J  C_  (𝑘Gen `  J ) )
87adantr 465 . . . 4  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  J  C_  (𝑘Gen `  J ) )
96, 8eqssd 3484 . . 3  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  =  J )
10 kgenf 19256 . . . . . 6  |- 𝑘Gen : Top --> Top
11 ffn 5670 . . . . . 6  |-  (𝑘Gen : Top --> Top 
-> 𝑘Gen 
Fn  Top )
1210, 11ax-mp 5 . . . . 5  |- 𝑘Gen  Fn  Top
13 fnfvelrn 5952 . . . . 5  |-  ( (𝑘Gen  Fn  Top  /\  J  e. 
Top )  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
1412, 13mpan 670 . . . 4  |-  ( J  e.  Top  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
1514adantr 465 . . 3  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
169, 15eqeltrrd 2543 . 2  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  J  e.  ran 𝑘Gen )
175, 16impbii 188 1  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3439   ran crn 4952    Fn wfn 5524   -->wf 5525   ` cfv 5529   Topctop 18640  𝑘Genckgen 19248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-oadd 7037  df-er 7214  df-en 7424  df-fin 7427  df-fi 7776  df-rest 14484  df-topgen 14505  df-top 18645  df-bases 18647  df-topon 18648  df-cmp 19132  df-kgen 19249
This theorem is referenced by:  iskgen3  19264  llycmpkgen2  19265  1stckgen  19269  txkgen  19367  qtopkgen  19425
  Copyright terms: Public domain W3C validator