MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iskgen2 Structured version   Unicode version

Theorem iskgen2 19894
Description: A space is compactly generated iff it contains its image under the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
iskgen2  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)

Proof of Theorem iskgen2
StepHypRef Expression
1 kgentop 19888 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  J  e.  Top )
2 kgenidm 19893 . . . 4  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  =  J )
3 eqimss 3561 . . . 4  |-  ( (𝑘Gen `  J )  =  J  ->  (𝑘Gen `  J )  C_  J )
42, 3syl 16 . . 3  |-  ( J  e.  ran 𝑘Gen  ->  (𝑘Gen `  J
)  C_  J )
51, 4jca 532 . 2  |-  ( J  e.  ran 𝑘Gen  ->  ( J  e.  Top  /\  (𝑘Gen `  J
)  C_  J )
)
6 simpr 461 . . . 4  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  C_  J
)
7 kgenss 19889 . . . . 5  |-  ( J  e.  Top  ->  J  C_  (𝑘Gen `  J ) )
87adantr 465 . . . 4  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  J  C_  (𝑘Gen `  J ) )
96, 8eqssd 3526 . . 3  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  =  J )
10 kgenf 19887 . . . . . 6  |- 𝑘Gen : Top --> Top
11 ffn 5736 . . . . . 6  |-  (𝑘Gen : Top --> Top 
-> 𝑘Gen 
Fn  Top )
1210, 11ax-mp 5 . . . . 5  |- 𝑘Gen  Fn  Top
13 fnfvelrn 6028 . . . . 5  |-  ( (𝑘Gen  Fn  Top  /\  J  e. 
Top )  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
1412, 13mpan 670 . . . 4  |-  ( J  e.  Top  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
1514adantr 465 . . 3  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  (𝑘Gen `  J )  e.  ran 𝑘Gen )
169, 15eqeltrrd 2556 . 2  |-  ( ( J  e.  Top  /\  (𝑘Gen
`  J )  C_  J )  ->  J  e.  ran 𝑘Gen )
175, 16impbii 188 1  |-  ( J  e.  ran 𝑘Gen  <->  ( J  e. 
Top  /\  (𝑘Gen `  J
)  C_  J )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3481   ran crn 5005    Fn wfn 5588   -->wf 5589   ` cfv 5593   Topctop 19240  𝑘Genckgen 19879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-om 6695  df-1st 6794  df-2nd 6795  df-recs 7052  df-rdg 7086  df-oadd 7144  df-er 7321  df-en 7527  df-fin 7530  df-fi 7881  df-rest 14690  df-topgen 14711  df-top 19245  df-bases 19247  df-topon 19248  df-cmp 19732  df-kgen 19880
This theorem is referenced by:  iskgen3  19895  llycmpkgen2  19896  1stckgen  19900  txkgen  19998  qtopkgen  20056
  Copyright terms: Public domain W3C validator