Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isismty Structured version   Unicode version

Theorem isismty 28700
Description: The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
isismty  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
Distinct variable groups:    x, M, y    x, N, y    x, X, y    x, Y, y   
x, F, y

Proof of Theorem isismty
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ismtyval 28699 . . 3  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( M  Ismty  N )  =  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( f `
 x ) N ( f `  y
) ) ) } )
21eleq2d 2510 . 2  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  F  e.  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) ) } ) )
3 f1of 5641 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  F : X
--> Y )
43adantr 465 . . . . . 6  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  ->  F : X --> Y )
5 elfvdm 5716 . . . . . 6  |-  ( M  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
6 elfvdm 5716 . . . . . 6  |-  ( N  e.  ( *Met `  Y )  ->  Y  e.  dom  *Met )
7 fex2 6532 . . . . . 6  |-  ( ( F : X --> Y  /\  X  e.  dom  *Met  /\  Y  e.  dom  *Met )  ->  F  e. 
_V )
84, 5, 6, 7syl3an 1260 . . . . 5  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  /\  M  e.  ( *Met `  X
)  /\  N  e.  ( *Met `  Y
) )  ->  F  e.  _V )
983expib 1190 . . . 4  |-  ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( F `
 x ) N ( F `  y
) ) )  -> 
( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y ) )  ->  F  e.  _V )
)
109com12 31 . . 3  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  (
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  ->  F  e.  _V ) )
11 f1oeq1 5632 . . . . 5  |-  ( f  =  F  ->  (
f : X -1-1-onto-> Y  <->  F : X
-1-1-onto-> Y ) )
12 fveq1 5690 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
13 fveq1 5690 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  y )  =  ( F `  y ) )
1412, 13oveq12d 6109 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  x
) N ( f `
 y ) )  =  ( ( F `
 x ) N ( F `  y
) ) )
1514eqeq2d 2454 . . . . . 6  |-  ( f  =  F  ->  (
( x M y )  =  ( ( f `  x ) N ( f `  y ) )  <->  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
16152ralbidv 2757 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) )  <->  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) )
1711, 16anbi12d 710 . . . 4  |-  ( f  =  F  ->  (
( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) )  <-> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
1817elab3g 3112 . . 3  |-  ( ( ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) )  ->  F  e.  _V )  ->  ( F  e. 
{ f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  (
x M y )  =  ( ( f `
 x ) N ( f `  y
) ) ) }  <-> 
( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
1910, 18syl 16 . 2  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  { f  |  ( f : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( f `  x ) N ( f `  y ) ) ) }  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
202, 19bitrd 253 1  |-  ( ( M  e.  ( *Met `  X )  /\  N  e.  ( *Met `  Y
) )  ->  ( F  e.  ( M  Ismty  N )  <->  ( F : X -1-1-onto-> Y  /\  A. x  e.  X  A. y  e.  X  ( x M y )  =  ( ( F `  x ) N ( F `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   A.wral 2715   _Vcvv 2972   dom cdm 4840   -->wf 5414   -1-1-onto->wf1o 5417   ` cfv 5418  (class class class)co 6091   *Metcxmt 17801    Ismty cismty 28697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216  df-xr 9422  df-xmet 17810  df-ismty 28698
This theorem is referenced by:  ismtycnv  28701  ismtyima  28702  ismtyhmeolem  28703  ismtybndlem  28705  ismtyres  28707  ismrer1  28737  reheibor  28738
  Copyright terms: Public domain W3C validator