MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isipodrs Structured version   Visualization version   Unicode version

Theorem isipodrs 16462
Description: Condition for a family of sets to be directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isipodrs  |-  ( (toInc `  A )  e. Dirset  <->  ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
Distinct variable group:    z, A, x, y

Proof of Theorem isipodrs
StepHypRef Expression
1 eqid 2462 . . . . 5  |-  ( Base `  (toInc `  A )
)  =  ( Base `  (toInc `  A )
)
21drsbn0 16237 . . . 4  |-  ( (toInc `  A )  e. Dirset  ->  (
Base `  (toInc `  A
) )  =/=  (/) )
32neneqd 2640 . . 3  |-  ( (toInc `  A )  e. Dirset  ->  -.  ( Base `  (toInc `  A ) )  =  (/) )
4 fvprc 5886 . . . . 5  |-  ( -.  A  e.  _V  ->  (toInc `  A )  =  (/) )
54fveq2d 5896 . . . 4  |-  ( -.  A  e.  _V  ->  (
Base `  (toInc `  A
) )  =  (
Base `  (/) ) )
6 base0 15217 . . . 4  |-  (/)  =  (
Base `  (/) )
75, 6syl6eqr 2514 . . 3  |-  ( -.  A  e.  _V  ->  (
Base `  (toInc `  A
) )  =  (/) )
83, 7nsyl2 132 . 2  |-  ( (toInc `  A )  e. Dirset  ->  A  e.  _V )
9 simp1 1014 . 2  |-  ( ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
)  ->  A  e.  _V )
10 eqid 2462 . . . 4  |-  ( le
`  (toInc `  A
) )  =  ( le `  (toInc `  A ) )
111, 10isdrs 16234 . . 3  |-  ( (toInc `  A )  e. Dirset  <->  ( (toInc `  A )  e.  Preset  /\  ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) )
12 eqid 2462 . . . . . . . 8  |-  (toInc `  A )  =  (toInc `  A )
1312ipopos 16461 . . . . . . 7  |-  (toInc `  A )  e.  Poset
14 posprs 16249 . . . . . . 7  |-  ( (toInc `  A )  e.  Poset  -> 
(toInc `  A )  e.  Preset  )
1513, 14mp1i 13 . . . . . 6  |-  ( A  e.  _V  ->  (toInc `  A )  e.  Preset  )
16 id 22 . . . . . 6  |-  ( A  e.  _V  ->  A  e.  _V )
1715, 162thd 248 . . . . 5  |-  ( A  e.  _V  ->  (
(toInc `  A )  e.  Preset 
<->  A  e.  _V )
)
1812ipobas 16456 . . . . . . 7  |-  ( A  e.  _V  ->  A  =  ( Base `  (toInc `  A ) ) )
19 neeq1 2698 . . . . . . . 8  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A  =/=  (/)  <->  ( Base `  (toInc `  A )
)  =/=  (/) ) )
20 rexeq 3000 . . . . . . . . . 10  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  E. z  e.  ( Base `  (toInc `  A
) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )
2120raleqbi1dv 3007 . . . . . . . . 9  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  A. y  e.  ( Base `  (toInc `  A
) ) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) )
2221raleqbi1dv 3007 . . . . . . . 8  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z )  <->  A. x  e.  ( Base `  (toInc `  A
) ) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )
2319, 22anbi12d 722 . . . . . . 7  |-  ( A  =  ( Base `  (toInc `  A ) )  -> 
( ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( ( Base `  (toInc `  A )
)  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) ) )
2418, 23syl 17 . . . . . 6  |-  ( A  e.  _V  ->  (
( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( ( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) ) )
25 simpll 765 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  A  e.  _V )
26 simplrl 775 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  x  e.  A )
27 simpr 467 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  z  e.  A )
2812, 10ipole 16459 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  x  e.  A  /\  z  e.  A )  ->  ( x ( le
`  (toInc `  A
) ) z  <->  x  C_  z
) )
2925, 26, 27, 28syl3anc 1276 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
x ( le `  (toInc `  A ) ) z  <->  x  C_  z ) )
30 simplrr 776 . . . . . . . . . . . 12  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  y  e.  A )
3112, 10ipole 16459 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  y  e.  A  /\  z  e.  A )  ->  ( y ( le
`  (toInc `  A
) ) z  <->  y  C_  z ) )
3225, 30, 27, 31syl3anc 1276 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
y ( le `  (toInc `  A ) ) z  <->  y  C_  z
) )
3329, 32anbi12d 722 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  ( x  C_  z  /\  y  C_  z ) ) )
34 unss 3620 . . . . . . . . . 10  |-  ( ( x  C_  z  /\  y  C_  z )  <->  ( x  u.  y )  C_  z
)
3533, 34syl6bb 269 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  /\  z  e.  A )  ->  (
( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  ( x  u.  y )  C_  z
) )
3635rexbidva 2910 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( x  e.  A  /\  y  e.  A
) )  ->  ( E. z  e.  A  ( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  E. z  e.  A  ( x  u.  y )  C_  z
) )
37362ralbidva 2842 . . . . . . 7  |-  ( A  e.  _V  ->  ( A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x ( le
`  (toInc `  A
) ) z  /\  y ( le `  (toInc `  A ) ) z )  <->  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
3837anbi2d 715 . . . . . 6  |-  ( A  e.  _V  ->  (
( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
3924, 38bitr3d 263 . . . . 5  |-  ( A  e.  _V  ->  (
( ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) )  <->  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
4017, 39anbi12d 722 . . . 4  |-  ( A  e.  _V  ->  (
( (toInc `  A
)  e.  Preset  /\  (
( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) ) )  <->  ( A  e.  _V  /\  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) ) )
41 3anass 995 . . . 4  |-  ( ( (toInc `  A )  e.  Preset  /\  ( Base `  (toInc `  A )
)  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( (toInc `  A )  e.  Preset  /\  ( ( Base `  (toInc `  A ) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A ) ) A. y  e.  ( Base `  (toInc `  A )
) E. z  e.  ( Base `  (toInc `  A ) ) ( x ( le `  (toInc `  A ) ) z  /\  y ( le `  (toInc `  A ) ) z ) ) ) )
42 3anass 995 . . . 4  |-  ( ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
)  <->  ( A  e. 
_V  /\  ( A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) ) )
4340, 41, 423bitr4g 296 . . 3  |-  ( A  e.  _V  ->  (
( (toInc `  A
)  e.  Preset  /\  ( Base `  (toInc `  A
) )  =/=  (/)  /\  A. x  e.  ( Base `  (toInc `  A )
) A. y  e.  ( Base `  (toInc `  A ) ) E. z  e.  ( Base `  (toInc `  A )
) ( x ( le `  (toInc `  A ) ) z  /\  y ( le
`  (toInc `  A
) ) z ) )  <->  ( A  e. 
_V  /\  A  =/=  (/) 
/\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y
)  C_  z )
) )
4411, 43syl5bb 265 . 2  |-  ( A  e.  _V  ->  (
(toInc `  A )  e. Dirset  <-> 
( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  (
x  u.  y ) 
C_  z ) ) )
458, 9, 44pm5.21nii 359 1  |-  ( (toInc `  A )  e. Dirset  <->  ( A  e.  _V  /\  A  =/=  (/)  /\  A. x  e.  A  A. y  e.  A  E. z  e.  A  ( x  u.  y )  C_  z
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750   _Vcvv 3057    u. cun 3414    C_ wss 3416   (/)c0 3743   class class class wbr 4418   ` cfv 5605   Basecbs 15176   lecple 15252    Preset cpreset 16226  Dirsetcdrs 16227   Posetcpo 16240  toInccipo 16452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-cnex 9626  ax-resscn 9627  ax-1cn 9628  ax-icn 9629  ax-addcl 9630  ax-addrcl 9631  ax-mulcl 9632  ax-mulrcl 9633  ax-mulcom 9634  ax-addass 9635  ax-mulass 9636  ax-distr 9637  ax-i2m1 9638  ax-1ne0 9639  ax-1rid 9640  ax-rnegex 9641  ax-rrecex 9642  ax-cnre 9643  ax-pre-lttri 9644  ax-pre-lttrn 9645  ax-pre-ltadd 9646  ax-pre-mulgt0 9647
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712  df-sub 9893  df-neg 9894  df-nn 10643  df-2 10701  df-3 10702  df-4 10703  df-5 10704  df-6 10705  df-7 10706  df-8 10707  df-9 10708  df-10 10709  df-n0 10904  df-z 10972  df-dec 11086  df-uz 11194  df-fz 11820  df-struct 15178  df-ndx 15179  df-slot 15180  df-base 15181  df-tset 15264  df-ple 15265  df-ocomp 15266  df-preset 16228  df-drs 16229  df-poset 16246  df-ipo 16453
This theorem is referenced by:  ipodrscl  16463  fpwipodrs  16465  ipodrsima  16466  nacsfix  35600
  Copyright terms: Public domain W3C validator