MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinffi Structured version   Unicode version

Theorem isinffi 8362
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 7723 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
isinffi  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin )  ->  E. f  f : B -1-1-> A )
Distinct variable groups:    A, f    B, f

Proof of Theorem isinffi
Dummy variables  c 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ficardom 8331 . . 3  |-  ( B  e.  Fin  ->  ( card `  B )  e. 
om )
2 isinf 7723 . . 3  |-  ( -.  A  e.  Fin  ->  A. a  e.  om  E. c ( c  C_  A  /\  c  ~~  a
) )
3 breq2 4444 . . . . . 6  |-  ( a  =  ( card `  B
)  ->  ( c  ~~  a  <->  c  ~~  ( card `  B ) ) )
43anbi2d 703 . . . . 5  |-  ( a  =  ( card `  B
)  ->  ( (
c  C_  A  /\  c  ~~  a )  <->  ( c  C_  A  /\  c  ~~  ( card `  B )
) ) )
54exbidv 1685 . . . 4  |-  ( a  =  ( card `  B
)  ->  ( E. c ( c  C_  A  /\  c  ~~  a
)  <->  E. c ( c 
C_  A  /\  c  ~~  ( card `  B
) ) ) )
65rspcva 3205 . . 3  |-  ( ( ( card `  B
)  e.  om  /\  A. a  e.  om  E. c ( c  C_  A  /\  c  ~~  a
) )  ->  E. c
( c  C_  A  /\  c  ~~  ( card `  B ) ) )
71, 2, 6syl2anr 478 . 2  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin )  ->  E. c ( c 
C_  A  /\  c  ~~  ( card `  B
) ) )
8 simprr 756 . . . . . 6  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  -> 
c  ~~  ( card `  B ) )
9 ficardid 8332 . . . . . . 7  |-  ( B  e.  Fin  ->  ( card `  B )  ~~  B )
109ad2antlr 726 . . . . . 6  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  -> 
( card `  B )  ~~  B )
11 entr 7557 . . . . . 6  |-  ( ( c  ~~  ( card `  B )  /\  ( card `  B )  ~~  B )  ->  c  ~~  B )
128, 10, 11syl2anc 661 . . . . 5  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  -> 
c  ~~  B )
1312ensymd 7556 . . . 4  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  ->  B  ~~  c )
14 bren 7515 . . . 4  |-  ( B 
~~  c  <->  E. f 
f : B -1-1-onto-> c )
1513, 14sylib 196 . . 3  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  ->  E. f  f : B
-1-1-onto-> c )
16 f1of1 5806 . . . . . . 7  |-  ( f : B -1-1-onto-> c  ->  f : B -1-1-> c )
1716adantl 466 . . . . . 6  |-  ( ( ( ( -.  A  e.  Fin  /\  B  e. 
Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  /\  f : B -1-1-onto-> c )  ->  f : B -1-1-> c )
18 simplrl 759 . . . . . 6  |-  ( ( ( ( -.  A  e.  Fin  /\  B  e. 
Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  /\  f : B -1-1-onto-> c )  ->  c  C_  A )
19 f1ss 5777 . . . . . 6  |-  ( ( f : B -1-1-> c  /\  c  C_  A
)  ->  f : B -1-1-> A )
2017, 18, 19syl2anc 661 . . . . 5  |-  ( ( ( ( -.  A  e.  Fin  /\  B  e. 
Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  /\  f : B -1-1-onto-> c )  ->  f : B -1-1-> A )
2120ex 434 . . . 4  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  -> 
( f : B -1-1-onto-> c  ->  f : B -1-1-> A
) )
2221eximdv 1681 . . 3  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  -> 
( E. f  f : B -1-1-onto-> c  ->  E. f 
f : B -1-1-> A
) )
2315, 22mpd 15 . 2  |-  ( ( ( -.  A  e. 
Fin  /\  B  e.  Fin )  /\  (
c  C_  A  /\  c  ~~  ( card `  B
) ) )  ->  E. f  f : B -1-1-> A )
247, 23exlimddv 1697 1  |-  ( ( -.  A  e.  Fin  /\  B  e.  Fin )  ->  E. f  f : B -1-1-> A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2807    C_ wss 3469   class class class wbr 4440   -1-1->wf1 5576   -1-1-onto->wf1o 5578   ` cfv 5579   omcom 6671    ~~ cen 7503   Fincfn 7506   cardccrd 8305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-card 8309
This theorem is referenced by:  fidomtri  8363  hashdom  12402  erdsze2lem1  28273  eldioph2lem2  30285
  Copyright terms: Public domain W3C validator