Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isidlc Structured version   Unicode version

Theorem isidlc 28953
Description: The predicate "is an ideal of the commutative ring  R." (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlval.1  |-  G  =  ( 1st `  R
)
idlval.2  |-  H  =  ( 2nd `  R
)
idlval.3  |-  X  =  ran  G
idlval.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
isidlc  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
Distinct variable groups:    x, R, y, z    z, X    x, I, y, z    x, X
Allowed substitution hints:    G( x, y, z)    H( x, y, z)    X( y)    Z( x, y, z)

Proof of Theorem isidlc
StepHypRef Expression
1 crngorngo 28938 . . 3  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
2 idlval.1 . . . 4  |-  G  =  ( 1st `  R
)
3 idlval.2 . . . 4  |-  H  =  ( 2nd `  R
)
4 idlval.3 . . . 4  |-  X  =  ran  G
5 idlval.4 . . . 4  |-  Z  =  (GId `  G )
62, 3, 4, 5isidl 28952 . . 3  |-  ( R  e.  RingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) ) )
71, 6syl 16 . 2  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) ) )
8 ssel2 3449 . . . . . . . 8  |-  ( ( I  C_  X  /\  x  e.  I )  ->  x  e.  X )
92, 3, 4crngocom 28939 . . . . . . . . . . . . . . 15  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
x H z )  =  ( z H x ) )
109eleq1d 2520 . . . . . . . . . . . . . 14  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
( x H z )  e.  I  <->  ( z H x )  e.  I ) )
1110biimprd 223 . . . . . . . . . . . . 13  |-  ( ( R  e. CRingOps  /\  x  e.  X  /\  z  e.  X )  ->  (
( z H x )  e.  I  -> 
( x H z )  e.  I ) )
12113expa 1188 . . . . . . . . . . . 12  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( z H x )  e.  I  -> 
( x H z )  e.  I ) )
1312pm4.71d 634 . . . . . . . . . . 11  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( z H x )  e.  I  <->  ( (
z H x )  e.  I  /\  (
x H z )  e.  I ) ) )
1413bicomd 201 . . . . . . . . . 10  |-  ( ( ( R  e. CRingOps  /\  x  e.  X )  /\  z  e.  X )  ->  (
( ( z H x )  e.  I  /\  ( x H z )  e.  I )  <-> 
( z H x )  e.  I ) )
1514ralbidva 2837 . . . . . . . . 9  |-  ( ( R  e. CRingOps  /\  x  e.  X )  ->  ( A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I )  <->  A. z  e.  X  ( z H x )  e.  I ) )
1615anbi2d 703 . . . . . . . 8  |-  ( ( R  e. CRingOps  /\  x  e.  X )  ->  (
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
178, 16sylan2 474 . . . . . . 7  |-  ( ( R  e. CRingOps  /\  (
I  C_  X  /\  x  e.  I )
)  ->  ( ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
1817anassrs 648 . . . . . 6  |-  ( ( ( R  e. CRingOps  /\  I  C_  X )  /\  x  e.  I )  ->  (
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  ( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
1918ralbidva 2837 . . . . 5  |-  ( ( R  e. CRingOps  /\  I  C_  X )  ->  ( A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
2019adantrr 716 . . . 4  |-  ( ( R  e. CRingOps  /\  (
I  C_  X  /\  Z  e.  I )
)  ->  ( A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) )  <->  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) )
2120pm5.32da 641 . . 3  |-  ( R  e. CRingOps  ->  ( ( ( I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( (
I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
22 df-3an 967 . . 3  |-  ( ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( (
I  C_  X  /\  Z  e.  I )  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( ( z H x )  e.  I  /\  ( x H z )  e.  I ) ) ) )
23 df-3an 967 . . 3  |-  ( ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I 
( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) )  <-> 
( ( I  C_  X  /\  Z  e.  I
)  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
z H x )  e.  I ) ) )
2421, 22, 233bitr4g 288 . 2  |-  ( R  e. CRingOps  ->  ( ( I 
C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
( z H x )  e.  I  /\  ( x H z )  e.  I ) ) )  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I  ( A. y  e.  I  (
x G y )  e.  I  /\  A. z  e.  X  (
z H x )  e.  I ) ) ) )
257, 24bitrd 253 1  |-  ( R  e. CRingOps  ->  ( I  e.  ( Idl `  R
)  <->  ( I  C_  X  /\  Z  e.  I  /\  A. x  e.  I 
( A. y  e.  I  ( x G y )  e.  I  /\  A. z  e.  X  ( z H x )  e.  I ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795    C_ wss 3426   ran crn 4939   ` cfv 5516  (class class class)co 6190   1stc1st 6675   2ndc2nd 6676  GIdcgi 23809   RingOpscrngo 23997  CRingOpsccring 28933   Idlcidl 28945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-iota 5479  df-fun 5518  df-fv 5524  df-ov 6193  df-1st 6677  df-2nd 6678  df-rngo 23998  df-com2 24033  df-crngo 28934  df-idl 28948
This theorem is referenced by:  prnc  29005
  Copyright terms: Public domain W3C validator