Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat2 Structured version   Unicode version

Theorem ishlat2 34953
Description: The predicate "is a Hilbert lattice". Here we replace  K  e.  CvLat with the weaker  K  e.  AtLat and show the exchange property explicitly. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b  |-  B  =  ( Base `  K
)
ishlat.l  |-  .<_  =  ( le `  K )
ishlat.s  |-  .<  =  ( lt `  K )
ishlat.j  |-  .\/  =  ( join `  K )
ishlat.z  |-  .0.  =  ( 0. `  K )
ishlat.u  |-  .1.  =  ( 1. `  K )
ishlat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ishlat2  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, K, y, z
Allowed substitution hints:    .< ( x, y,
z)    .1. ( x, y, z)    .\/ ( x, y, z)    .<_ ( x, y, z)    .0. ( x, y, z)

Proof of Theorem ishlat2
StepHypRef Expression
1 ishlat.b . . 3  |-  B  =  ( Base `  K
)
2 ishlat.l . . 3  |-  .<_  =  ( le `  K )
3 ishlat.s . . 3  |-  .<  =  ( lt `  K )
4 ishlat.j . . 3  |-  .\/  =  ( join `  K )
5 ishlat.z . . 3  |-  .0.  =  ( 0. `  K )
6 ishlat.u . . 3  |-  .1.  =  ( 1. `  K )
7 ishlat.a . . 3  |-  A  =  ( Atoms `  K )
81, 2, 3, 4, 5, 6, 7ishlat1 34952 . 2  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
91, 2, 4, 7iscvlat 34923 . . . . 5  |-  ( K  e.  CvLat 
<->  ( K  e.  AtLat  /\ 
A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) ) ) )
1093anbi3i 1190 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  ( K  e.  OML  /\  K  e. 
CLat  /\  ( K  e. 
AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) ) )
11 anass 649 . . . . 5  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat )  /\  K  e. 
AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  <-> 
( ( K  e. 
OML  /\  K  e.  CLat )  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) ) )
12 df-3an 976 . . . . . 6  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  AtLat ) )
1312anbi1i 695 . . . . 5  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  <->  ( ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )
14 df-3an 976 . . . . 5  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) ) )
1511, 13, 143bitr4ri 278 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  ( K  e.  AtLat  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
1610, 15bitri 249 . . 3  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
1716anbi1i 695 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
18 anass 649 . . 3  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) ) ) ) )
19 anass 649 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) )  <->  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) ) ) )
20 ancom 450 . . . . . . 7  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) ) )  <->  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
21 r19.26-2 2971 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  <-> 
( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) ) )
2220, 21bitr4i 252 . . . . . 6  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) ) )  <->  A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
2322anbi1i 695 . . . . 5  |-  ( ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) )  /\  A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  (
(  .0.  .<  x  /\  x  .<  y )  /\  ( y  .< 
z  /\  z  .<  .1.  ) ) )  <->  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
2419, 23bitr3i 251 . . . 4  |-  ( ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
2524anbi2i 694 . . 3  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( A. x  e.  A  A. y  e.  A  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
2618, 25bitri 249 . 2  |-  ( ( ( ( K  e. 
OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  A. x  e.  A  A. y  e.  A  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
278, 17, 263bitri 271 1  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   Basecbs 14614   lecple 14686   ltcplt 15549   joincjn 15552   0.cp0 15646   1.cp1 15647   CLatccla 15716   OMLcoml 34775   Atomscatm 34863   AtLatcal 34864   CvLatclc 34865   HLchlt 34950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-iota 5541  df-fv 5586  df-ov 6284  df-cvlat 34922  df-hlat 34951
This theorem is referenced by:  ishlatiN  34955  hlsuprexch  34980  hlhgt4  34987
  Copyright terms: Public domain W3C validator