MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Unicode version

Theorem isgrpde 16396
Description: Deduce a group from its properties. In this version of isgrpd 16397, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpde.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpde  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z    ph, x, y, z    x, G, y, z

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.z . . 3  |-  ( ph  ->  .0.  e.  B )
4 isgrpd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5 isgrpd.c . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
6 isgrpd.a . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7 isgrpde.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
85, 3, 4, 6, 7grpridd 6495 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
91, 2, 3, 4, 8grpidd 16217 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
101, 2, 5, 6, 3, 4, 8ismndd 16265 . 2  |-  ( ph  ->  G  e.  Mnd )
111, 2, 9, 10, 7isgrpd2e 16394 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   E.wrex 2754   ` cfv 5568  (class class class)co 6277   Basecbs 14839   +g cplusg 14907   Grpcgrp 16375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-iota 5532  df-fun 5570  df-fv 5576  df-riota 6239  df-ov 6280  df-0g 15054  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379
This theorem is referenced by:  isgrpd  16397  imasgrp2  16507  unitgrp  17634
  Copyright terms: Public domain W3C validator