MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpde Structured version   Unicode version

Theorem isgrpde 15583
Description: Deduce a group from its properties. In this version of isgrpd 15584, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrpd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
isgrpd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
isgrpd.z  |-  ( ph  ->  .0.  e.  B )
isgrpd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
isgrpde.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpde  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,
z,  .+    x,  .0. , y,
z    x, B, y, z    ph, x, y, z    x, G, y, z

Proof of Theorem isgrpde
StepHypRef Expression
1 isgrpd.b . 2  |-  ( ph  ->  B  =  ( Base `  G ) )
2 isgrpd.p . 2  |-  ( ph  ->  .+  =  ( +g  `  G ) )
3 isgrpd.z . . 3  |-  ( ph  ->  .0.  e.  B )
4 isgrpd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
5 isgrpd.c . . . 4  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  e.  B
)
6 isgrpd.a . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
7 isgrpde.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
85, 3, 4, 6, 7grpridd 6324 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
91, 2, 3, 4, 8grpidd 15464 . 2  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
101, 2, 5, 6, 3, 4, 8ismndd 15465 . 2  |-  ( ph  ->  G  e.  Mnd )
111, 2, 9, 10, 7isgrpd2e 15581 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2737   ` cfv 5439  (class class class)co 6112   Basecbs 14195   +g cplusg 14259   Grpcgrp 15431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-iota 5402  df-fun 5441  df-fv 5447  df-riota 6073  df-ov 6115  df-0g 14401  df-mnd 15436  df-grp 15566
This theorem is referenced by:  isgrpd  15584  imasgrp2  15691  unitgrp  16781
  Copyright terms: Public domain W3C validator