MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrp2d Structured version   Unicode version

Theorem isgrp2d 24941
Description: An alternate way to show a group operation. Exercise 1 of [Herstein] p. 57. (Contributed by Mario Carneiro, 12-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
isgrp2d.1  |-  ( ph  ->  X  e.  V )
isgrp2d.2  |-  ( ph  ->  X  =/=  (/) )
isgrp2d.3  |-  ( ph  ->  G : ( X  X.  X ) --> X )
isgrp2d.4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
isgrp2d.5  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  E. z  e.  X  ( z G x )  =  y )
isgrp2d.6  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  E. z  e.  X  ( x G z )  =  y )
Assertion
Ref Expression
isgrp2d  |-  ( ph  ->  G  e.  GrpOp )
Distinct variable groups:    x, y,
z, G    x, X, y, z    ph, x, y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem isgrp2d
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isgrp2d.3 . . 3  |-  ( ph  ->  G : ( X  X.  X ) --> X )
2 isgrp2d.2 . . . . . . . . . 10  |-  ( ph  ->  X  =/=  (/) )
32adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X )  ->  X  =/=  (/) )
4 isgrp2d.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  E. z  e.  X  ( x G z )  =  y )
54anass1rs 805 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  x  e.  X )  ->  E. z  e.  X  ( x G z )  =  y )
6 eqcom 2476 . . . . . . . . . . . 12  |-  ( ( x G z )  =  y  <->  y  =  ( x G z ) )
76rexbii 2965 . . . . . . . . . . 11  |-  ( E. z  e.  X  ( x G z )  =  y  <->  E. z  e.  X  y  =  ( x G z ) )
85, 7sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  x  e.  X )  ->  E. z  e.  X  y  =  ( x G z ) )
98ralrimiva 2878 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X )  ->  A. x  e.  X  E. z  e.  X  y  =  ( x G z ) )
10 r19.2z 3917 . . . . . . . . 9  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  E. z  e.  X  y  =  ( x G z ) )  ->  E. x  e.  X  E. z  e.  X  y  =  ( x G z ) )
113, 9, 10syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  y  e.  X )  ->  E. x  e.  X  E. z  e.  X  y  =  ( x G z ) )
1211ralrimiva 2878 . . . . . . 7  |-  ( ph  ->  A. y  e.  X  E. x  e.  X  E. z  e.  X  y  =  ( x G z ) )
13 foov 6433 . . . . . . 7  |-  ( G : ( X  X.  X ) -onto-> X  <->  ( G : ( X  X.  X ) --> X  /\  A. y  e.  X  E. x  e.  X  E. z  e.  X  y  =  ( x G z ) ) )
141, 12, 13sylanbrc 664 . . . . . 6  |-  ( ph  ->  G : ( X  X.  X ) -onto-> X )
15 forn 5798 . . . . . 6  |-  ( G : ( X  X.  X ) -onto-> X  ->  ran  G  =  X )
1614, 15syl 16 . . . . 5  |-  ( ph  ->  ran  G  =  X )
1716, 16xpeq12d 5024 . . . 4  |-  ( ph  ->  ( ran  G  X.  ran  G )  =  ( X  X.  X ) )
1817, 16feq23d 5726 . . 3  |-  ( ph  ->  ( G : ( ran  G  X.  ran  G ) --> ran  G  <->  G :
( X  X.  X
) --> X ) )
191, 18mpbird 232 . 2  |-  ( ph  ->  G : ( ran 
G  X.  ran  G
) --> ran  G )
20 isgrp2d.4 . . . 4  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X  /\  z  e.  X ) )  -> 
( ( x G y ) G z )  =  ( x G ( y G z ) ) )
2120ralrimivvva 2886 . . 3  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
2216raleqdv 3064 . . . . 5  |-  ( ph  ->  ( A. z  e. 
ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
2316, 22raleqbidv 3072 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
2416, 23raleqbidv 3072 . . 3  |-  ( ph  ->  ( A. x  e. 
ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) ) )
2521, 24mpbird 232 . 2  |-  ( ph  ->  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
26 n0 3794 . . . . 5  |-  ( X  =/=  (/)  <->  E. w  w  e.  X )
272, 26sylib 196 . . . 4  |-  ( ph  ->  E. w  w  e.  X )
28 simpr 461 . . . . . . 7  |-  ( (
ph  /\  w  e.  X )  ->  w  e.  X )
2928, 28jca 532 . . . . . 6  |-  ( (
ph  /\  w  e.  X )  ->  (
w  e.  X  /\  w  e.  X )
)
30 isgrp2d.5 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  X  /\  y  e.  X ) )  ->  E. z  e.  X  ( z G x )  =  y )
3130ralrimivva 2885 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  E. z  e.  X  ( z G x )  =  y )
3231adantr 465 . . . . . 6  |-  ( (
ph  /\  w  e.  X )  ->  A. x  e.  X  A. y  e.  X  E. z  e.  X  ( z G x )  =  y )
33 oveq2 6292 . . . . . . . . 9  |-  ( x  =  w  ->  (
z G x )  =  ( z G w ) )
3433eqeq1d 2469 . . . . . . . 8  |-  ( x  =  w  ->  (
( z G x )  =  y  <->  ( z G w )  =  y ) )
3534rexbidv 2973 . . . . . . 7  |-  ( x  =  w  ->  ( E. z  e.  X  ( z G x )  =  y  <->  E. z  e.  X  ( z G w )  =  y ) )
36 eqeq2 2482 . . . . . . . . 9  |-  ( y  =  w  ->  (
( z G w )  =  y  <->  ( z G w )  =  w ) )
3736rexbidv 2973 . . . . . . . 8  |-  ( y  =  w  ->  ( E. z  e.  X  ( z G w )  =  y  <->  E. z  e.  X  ( z G w )  =  w ) )
38 oveq1 6291 . . . . . . . . . 10  |-  ( z  =  u  ->  (
z G w )  =  ( u G w ) )
3938eqeq1d 2469 . . . . . . . . 9  |-  ( z  =  u  ->  (
( z G w )  =  w  <->  ( u G w )  =  w ) )
4039cbvrexv 3089 . . . . . . . 8  |-  ( E. z  e.  X  ( z G w )  =  w  <->  E. u  e.  X  ( u G w )  =  w )
4137, 40syl6bb 261 . . . . . . 7  |-  ( y  =  w  ->  ( E. z  e.  X  ( z G w )  =  y  <->  E. u  e.  X  ( u G w )  =  w ) )
4235, 41rspc2v 3223 . . . . . 6  |-  ( ( w  e.  X  /\  w  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  E. z  e.  X  ( z G x )  =  y  ->  E. u  e.  X  ( u G w )  =  w ) )
4329, 32, 42sylc 60 . . . . 5  |-  ( (
ph  /\  w  e.  X )  ->  E. u  e.  X  ( u G w )  =  w )
444ralrimivva 2885 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  X  A. y  e.  X  E. z  e.  X  ( x G z )  =  y )
45 oveq1 6291 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
x G z )  =  ( w G z ) )
4645eqeq1d 2469 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
( x G z )  =  y  <->  ( w G z )  =  y ) )
4746rexbidv 2973 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( E. z  e.  X  ( x G z )  =  y  <->  E. z  e.  X  ( w G z )  =  y ) )
4847ralbidv 2903 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( A. y  e.  X  E. z  e.  X  ( x G z )  =  y  <->  A. y  e.  X  E. z  e.  X  ( w G z )  =  y ) )
4948rspccva 3213 . . . . . . . . . . . . 13  |-  ( ( A. x  e.  X  A. y  e.  X  E. z  e.  X  ( x G z )  =  y  /\  w  e.  X )  ->  A. y  e.  X  E. z  e.  X  ( w G z )  =  y )
5044, 49sylan 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  X )  ->  A. y  e.  X  E. z  e.  X  ( w G z )  =  y )
51 eqeq2 2482 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
( w G z )  =  y  <->  ( w G z )  =  x ) )
5251rexbidv 2973 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( E. z  e.  X  ( w G z )  =  y  <->  E. z  e.  X  ( w G z )  =  x ) )
53 oveq2 6292 . . . . . . . . . . . . . . . 16  |-  ( z  =  v  ->  (
w G z )  =  ( w G v ) )
5453eqeq1d 2469 . . . . . . . . . . . . . . 15  |-  ( z  =  v  ->  (
( w G z )  =  x  <->  ( w G v )  =  x ) )
5554cbvrexv 3089 . . . . . . . . . . . . . 14  |-  ( E. z  e.  X  ( w G z )  =  x  <->  E. v  e.  X  ( w G v )  =  x )
5652, 55syl6bb 261 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  ( E. z  e.  X  ( w G z )  =  y  <->  E. v  e.  X  ( w G v )  =  x ) )
5756rspccva 3213 . . . . . . . . . . . 12  |-  ( ( A. y  e.  X  E. z  e.  X  ( w G z )  =  y  /\  x  e.  X )  ->  E. v  e.  X  ( w G v )  =  x )
5850, 57sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  X )  /\  x  e.  X )  ->  E. v  e.  X  ( w G v )  =  x )
5958ad2ant2r 746 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( x  e.  X  /\  (
u G w )  =  w ) )  ->  E. v  e.  X  ( w G v )  =  x )
6021ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) ) )
61 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  ->  u  e.  X )
62 simpllr 758 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  ->  w  e.  X )
63 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
v  e.  X )
64 oveq1 6291 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  u  ->  (
x G y )  =  ( u G y ) )
6564oveq1d 6299 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  u  ->  (
( x G y ) G z )  =  ( ( u G y ) G z ) )
66 oveq1 6291 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  u  ->  (
x G ( y G z ) )  =  ( u G ( y G z ) ) )
6765, 66eqeq12d 2489 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  u  ->  (
( ( x G y ) G z )  =  ( x G ( y G z ) )  <->  ( (
u G y ) G z )  =  ( u G ( y G z ) ) ) )
68 oveq2 6292 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
u G y )  =  ( u G w ) )
6968oveq1d 6299 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  w  ->  (
( u G y ) G z )  =  ( ( u G w ) G z ) )
70 oveq1 6291 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
y G z )  =  ( w G z ) )
7170oveq2d 6300 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  w  ->  (
u G ( y G z ) )  =  ( u G ( w G z ) ) )
7269, 71eqeq12d 2489 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  w  ->  (
( ( u G y ) G z )  =  ( u G ( y G z ) )  <->  ( (
u G w ) G z )  =  ( u G ( w G z ) ) ) )
73 oveq2 6292 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  v  ->  (
( u G w ) G z )  =  ( ( u G w ) G v ) )
7453oveq2d 6300 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  v  ->  (
u G ( w G z ) )  =  ( u G ( w G v ) ) )
7573, 74eqeq12d 2489 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  v  ->  (
( ( u G w ) G z )  =  ( u G ( w G z ) )  <->  ( (
u G w ) G v )  =  ( u G ( w G v ) ) ) )
7667, 72, 75rspc3v 3226 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  X  /\  w  e.  X  /\  v  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( ( u G w ) G v )  =  ( u G ( w G v ) ) ) )
7761, 62, 63, 76syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( ( x G y ) G z )  =  ( x G ( y G z ) )  ->  ( ( u G w ) G v )  =  ( u G ( w G v ) ) ) )
7860, 77mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
( ( u G w ) G v )  =  ( u G ( w G v ) ) )
79 simprl 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
( u G w )  =  w )
8079oveq1d 6299 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
( ( u G w ) G v )  =  ( w G v ) )
8178, 80eqtr3d 2510 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( (
u G w )  =  w  /\  v  e.  X ) )  -> 
( u G ( w G v ) )  =  ( w G v ) )
8281anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( u G w )  =  w )  /\  v  e.  X )  ->  (
u G ( w G v ) )  =  ( w G v ) )
83 oveq2 6292 . . . . . . . . . . . . . 14  |-  ( ( w G v )  =  x  ->  (
u G ( w G v ) )  =  ( u G x ) )
84 id 22 . . . . . . . . . . . . . 14  |-  ( ( w G v )  =  x  ->  (
w G v )  =  x )
8583, 84eqeq12d 2489 . . . . . . . . . . . . 13  |-  ( ( w G v )  =  x  ->  (
( u G ( w G v ) )  =  ( w G v )  <->  ( u G x )  =  x ) )
8682, 85syl5ibcom 220 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( u G w )  =  w )  /\  v  e.  X )  ->  (
( w G v )  =  x  -> 
( u G x )  =  x ) )
8786rexlimdva 2955 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( u G w )  =  w )  ->  ( E. v  e.  X  ( w G v )  =  x  -> 
( u G x )  =  x ) )
8887adantrl 715 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( x  e.  X  /\  (
u G w )  =  w ) )  ->  ( E. v  e.  X  ( w G v )  =  x  ->  ( u G x )  =  x ) )
8959, 88mpd 15 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( x  e.  X  /\  (
u G w )  =  w ) )  ->  ( u G x )  =  x )
90 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  X )  /\  x  e.  X )  ->  u  e.  X )
9130anassrs 648 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  X )  /\  y  e.  X )  ->  E. z  e.  X  ( z G x )  =  y )
9291ralrimiva 2878 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  X  E. z  e.  X  ( z G x )  =  y )
9392adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  X )  /\  x  e.  X )  ->  A. y  e.  X  E. z  e.  X  ( z G x )  =  y )
94 eqeq2 2482 . . . . . . . . . . . . . . 15  |-  ( y  =  u  ->  (
( z G x )  =  y  <->  ( z G x )  =  u ) )
9594rexbidv 2973 . . . . . . . . . . . . . 14  |-  ( y  =  u  ->  ( E. z  e.  X  ( z G x )  =  y  <->  E. z  e.  X  ( z G x )  =  u ) )
9695rspcv 3210 . . . . . . . . . . . . 13  |-  ( u  e.  X  ->  ( A. y  e.  X  E. z  e.  X  ( z G x )  =  y  ->  E. z  e.  X  ( z G x )  =  u ) )
9790, 93, 96sylc 60 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  X )  /\  x  e.  X )  ->  E. z  e.  X  ( z G x )  =  u )
98 oveq1 6291 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
z G x )  =  ( y G x ) )
9998eqeq1d 2469 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
( z G x )  =  u  <->  ( y G x )  =  u ) )
10099cbvrexv 3089 . . . . . . . . . . . 12  |-  ( E. z  e.  X  ( z G x )  =  u  <->  E. y  e.  X  ( y G x )  =  u )
10197, 100sylib 196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  X )  /\  x  e.  X )  ->  E. y  e.  X  ( y G x )  =  u )
102101adantllr 718 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  x  e.  X )  ->  E. y  e.  X  ( y G x )  =  u )
103102adantrr 716 . . . . . . . . 9  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( x  e.  X  /\  (
u G w )  =  w ) )  ->  E. y  e.  X  ( y G x )  =  u )
10489, 103jca 532 . . . . . . . 8  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  ( x  e.  X  /\  (
u G w )  =  w ) )  ->  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
105104expr 615 . . . . . . 7  |-  ( ( ( ( ph  /\  w  e.  X )  /\  u  e.  X
)  /\  x  e.  X )  ->  (
( u G w )  =  w  -> 
( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
106105ralrimdva 2882 . . . . . 6  |-  ( ( ( ph  /\  w  e.  X )  /\  u  e.  X )  ->  (
( u G w )  =  w  ->  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
107106reximdva 2938 . . . . 5  |-  ( (
ph  /\  w  e.  X )  ->  ( E. u  e.  X  ( u G w )  =  w  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) ) )
10843, 107mpd 15 . . . 4  |-  ( (
ph  /\  w  e.  X )  ->  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) )
10927, 108exlimddv 1702 . . 3  |-  ( ph  ->  E. u  e.  X  A. x  e.  X  ( ( u G x )  =  x  /\  E. y  e.  X  ( y G x )  =  u ) )
11016rexeqdv 3065 . . . . . 6  |-  ( ph  ->  ( E. y  e. 
ran  G ( y G x )  =  u  <->  E. y  e.  X  ( y G x )  =  u ) )
111110anbi2d 703 . . . . 5  |-  ( ph  ->  ( ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
11216, 111raleqbidv 3072 . . . 4  |-  ( ph  ->  ( A. x  e. 
ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
11316, 112rexeqbidv 3073 . . 3  |-  ( ph  ->  ( E. u  e. 
ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u )  <->  E. u  e.  X  A. x  e.  X  ( (
u G x )  =  x  /\  E. y  e.  X  (
y G x )  =  u ) ) )
114109, 113mpbird 232 . 2  |-  ( ph  ->  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e. 
ran  G ( y G x )  =  u ) )
115 isgrp2d.1 . . . . 5  |-  ( ph  ->  X  e.  V )
116 xpexg 6586 . . . . 5  |-  ( ( X  e.  V  /\  X  e.  V )  ->  ( X  X.  X
)  e.  _V )
117115, 115, 116syl2anc 661 . . . 4  |-  ( ph  ->  ( X  X.  X
)  e.  _V )
118 fex 6133 . . . 4  |-  ( ( G : ( X  X.  X ) --> X  /\  ( X  X.  X )  e.  _V )  ->  G  e.  _V )
1191, 117, 118syl2anc 661 . . 3  |-  ( ph  ->  G  e.  _V )
120 eqid 2467 . . . 4  |-  ran  G  =  ran  G
121120isgrpo 24902 . . 3  |-  ( G  e.  _V  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
122119, 121syl 16 . 2  |-  ( ph  ->  ( G  e.  GrpOp  <->  ( G : ( ran  G  X.  ran  G ) --> ran 
G  /\  A. x  e.  ran  G A. y  e.  ran  G A. z  e.  ran  G ( ( x G y ) G z )  =  ( x G ( y G z ) )  /\  E. u  e.  ran  G A. x  e.  ran  G ( ( u G x )  =  x  /\  E. y  e.  ran  G ( y G x )  =  u ) ) ) )
12319, 25, 114, 122mpbir3and 1179 1  |-  ( ph  ->  G  e.  GrpOp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113   (/)c0 3785    X. cxp 4997   ran crn 5000   -->wf 5584   -onto->wfo 5586  (class class class)co 6284   GrpOpcgr 24892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-grpo 24897
This theorem is referenced by:  isgrp2i  24942  ghgrp  25074
  Copyright terms: Public domain W3C validator