MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgim Structured version   Unicode version

Theorem isgim 16184
Description: An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
isgim.b  |-  B  =  ( Base `  R
)
isgim.c  |-  C  =  ( Base `  S
)
Assertion
Ref Expression
isgim  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )

Proof of Theorem isgim
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 976 . 2  |-  ( ( R  e.  Grp  /\  S  e.  Grp  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
)  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
2 df-gim 16181 . . 3  |- GrpIso  =  ( a  e.  Grp , 
b  e.  Grp  |->  { c  e.  ( a 
GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) } )
3 ovex 6309 . . . 4  |-  ( a 
GrpHom  b )  e.  _V
43rabex 4588 . . 3  |-  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a
)
-1-1-onto-> ( Base `  b ) }  e.  _V
5 oveq12 6290 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( a  GrpHom  b )  =  ( R  GrpHom  S ) )
6 fveq2 5856 . . . . . 6  |-  ( a  =  R  ->  ( Base `  a )  =  ( Base `  R
) )
7 isgim.b . . . . . 6  |-  B  =  ( Base `  R
)
86, 7syl6eqr 2502 . . . . 5  |-  ( a  =  R  ->  ( Base `  a )  =  B )
9 fveq2 5856 . . . . . 6  |-  ( b  =  S  ->  ( Base `  b )  =  ( Base `  S
) )
10 isgim.c . . . . . 6  |-  C  =  ( Base `  S
)
119, 10syl6eqr 2502 . . . . 5  |-  ( b  =  S  ->  ( Base `  b )  =  C )
12 f1oeq23 5800 . . . . 5  |-  ( ( ( Base `  a
)  =  B  /\  ( Base `  b )  =  C )  ->  (
c : ( Base `  a ) -1-1-onto-> ( Base `  b
)  <->  c : B -1-1-onto-> C
) )
138, 11, 12syl2an 477 . . . 4  |-  ( ( a  =  R  /\  b  =  S )  ->  ( c : (
Base `  a ) -1-1-onto-> ( Base `  b )  <->  c : B
-1-1-onto-> C ) )
145, 13rabeqbidv 3090 . . 3  |-  ( ( a  =  R  /\  b  =  S )  ->  { c  e.  ( a  GrpHom  b )  |  c : ( Base `  a ) -1-1-onto-> ( Base `  b
) }  =  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } )
152, 4, 14elovmpt2 6505 . 2  |-  ( F  e.  ( R GrpIso  S
)  <->  ( R  e. 
Grp  /\  S  e.  Grp  /\  F  e.  {
c  e.  ( R 
GrpHom  S )  |  c : B -1-1-onto-> C } ) )
16 ghmgrp1 16143 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  R  e.  Grp )
17 ghmgrp2 16144 . . . . . 6  |-  ( F  e.  ( R  GrpHom  S )  ->  S  e.  Grp )
1816, 17jca 532 . . . . 5  |-  ( F  e.  ( R  GrpHom  S )  ->  ( R  e.  Grp  /\  S  e. 
Grp ) )
1918adantr 465 . . . 4  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  ->  ( R  e.  Grp  /\  S  e.  Grp ) )
2019pm4.71ri 633 . . 3  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
21 f1oeq1 5797 . . . . 5  |-  ( c  =  F  ->  (
c : B -1-1-onto-> C  <->  F : B
-1-1-onto-> C ) )
2221elrab 3243 . . . 4  |-  ( F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } 
<->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) )
2322anbi2i 694 . . 3  |-  ( ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C } )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C ) ) )
2420, 23bitr4i 252 . 2  |-  ( ( F  e.  ( R 
GrpHom  S )  /\  F : B -1-1-onto-> C )  <->  ( ( R  e.  Grp  /\  S  e.  Grp )  /\  F  e.  { c  e.  ( R  GrpHom  S )  |  c : B -1-1-onto-> C }
) )
251, 15, 243bitr4i 277 1  |-  ( F  e.  ( R GrpIso  S
)  <->  ( F  e.  ( R  GrpHom  S )  /\  F : B -1-1-onto-> C
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   {crab 2797   -1-1-onto->wf1o 5577   ` cfv 5578  (class class class)co 6281   Basecbs 14509   Grpcgrp 15927    GrpHom cghm 16138   GrpIso cgim 16179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-ghm 16139  df-gim 16181
This theorem is referenced by:  gimf1o  16185  gimghm  16186  isgim2  16187  invoppggim  16269  rimgim  17259  lmimgim  17585  zzngim  18464  cygznlem3  18481  pm2mpgrpiso  19191  reefgim  22717  imasgim  31023
  Copyright terms: Public domain W3C validator