MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghm Structured version   Visualization version   Unicode version

Theorem isghm 16961
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w  |-  X  =  ( Base `  S
)
isghm.x  |-  Y  =  ( Base `  T
)
isghm.a  |-  .+  =  ( +g  `  S )
isghm.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
isghm  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Distinct variable groups:    v, u, S    u, T, v    u, X, v    u,  .+ , v    u, Y, v    u,  .+^ , v    u, F, v

Proof of Theorem isghm
Dummy variables  t 
s  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 16959 . . 3  |-  GrpHom  =  ( s  e.  Grp , 
t  e.  Grp  |->  { f  |  [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) } )
21elmpt2cl 6530 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
3 fvex 5889 . . . . . . . 8  |-  ( Base `  s )  e.  _V
4 feq2 5721 . . . . . . . . 9  |-  ( w  =  ( Base `  s
)  ->  ( f : w --> ( Base `  t )  <->  f :
( Base `  s ) --> ( Base `  t )
) )
5 raleq 2973 . . . . . . . . . 10  |-  ( w  =  ( Base `  s
)  ->  ( A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) ) ) )
65raleqbi1dv 2981 . . . . . . . . 9  |-  ( w  =  ( Base `  s
)  ->  ( A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. u  e.  ( Base `  s ) A. v  e.  ( Base `  s ) ( f `
 ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) ) )
74, 6anbi12d 725 . . . . . . . 8  |-  ( w  =  ( Base `  s
)  ->  ( (
f : w --> ( Base `  t )  /\  A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) )  <->  ( f : ( Base `  s
) --> ( Base `  t
)  /\  A. u  e.  ( Base `  s
) A. v  e.  ( Base `  s
) ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) ) )
83, 7sbcie 3290 . . . . . . 7  |-  ( [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t )  /\  A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) )  <->  ( f : ( Base `  s
) --> ( Base `  t
)  /\  A. u  e.  ( Base `  s
) A. v  e.  ( Base `  s
) ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) )
9 fveq2 5879 . . . . . . . . . 10  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
10 isghm.w . . . . . . . . . 10  |-  X  =  ( Base `  S
)
119, 10syl6eqr 2523 . . . . . . . . 9  |-  ( s  =  S  ->  ( Base `  s )  =  X )
1211feq2d 5725 . . . . . . . 8  |-  ( s  =  S  ->  (
f : ( Base `  s ) --> ( Base `  t )  <->  f : X
--> ( Base `  t
) ) )
13 fveq2 5879 . . . . . . . . . . . . . 14  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
14 isghm.a . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  S )
1513, 14syl6eqr 2523 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
1615oveqd 6325 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
u ( +g  `  s
) v )  =  ( u  .+  v
) )
1716fveq2d 5883 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
f `  ( u
( +g  `  s ) v ) )  =  ( f `  (
u  .+  v )
) )
1817eqeq1d 2473 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( f `  (
u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) )  <->  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) )
1911, 18raleqbidv 2987 . . . . . . . . 9  |-  ( s  =  S  ->  ( A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) )  <->  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) )
2011, 19raleqbidv 2987 . . . . . . . 8  |-  ( s  =  S  ->  ( A. u  e.  ( Base `  s ) A. v  e.  ( Base `  s ) ( f `
 ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) )
2112, 20anbi12d 725 . . . . . . 7  |-  ( s  =  S  ->  (
( f : (
Base `  s ) --> ( Base `  t )  /\  A. u  e.  (
Base `  s ) A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) ) )  <->  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) ) )
228, 21syl5bb 265 . . . . . 6  |-  ( s  =  S  ->  ( [. ( Base `  s
)  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) )  <-> 
( f : X --> ( Base `  t )  /\  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) ) )
2322abbidv 2589 . . . . 5  |-  ( s  =  S  ->  { f  |  [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) }  =  { f  |  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) } )
24 fveq2 5879 . . . . . . . . 9  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
25 isghm.x . . . . . . . . 9  |-  Y  =  ( Base `  T
)
2624, 25syl6eqr 2523 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  Y )
2726feq3d 5726 . . . . . . 7  |-  ( t  =  T  ->  (
f : X --> ( Base `  t )  <->  f : X
--> Y ) )
28 fveq2 5879 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
29 isghm.b . . . . . . . . . . 11  |-  .+^  =  ( +g  `  T )
3028, 29syl6eqr 2523 . . . . . . . . . 10  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
3130oveqd 6325 . . . . . . . . 9  |-  ( t  =  T  ->  (
( f `  u
) ( +g  `  t
) ( f `  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) )
3231eqeq2d 2481 . . . . . . . 8  |-  ( t  =  T  ->  (
( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) )  <->  ( f `  ( u  .+  v
) )  =  ( ( f `  u
)  .+^  ( f `  v ) ) ) )
33322ralbidv 2832 . . . . . . 7  |-  ( t  =  T  ->  ( A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) )  <->  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
)  .+^  ( f `  v ) ) ) )
3427, 33anbi12d 725 . . . . . 6  |-  ( t  =  T  ->  (
( f : X --> ( Base `  t )  /\  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) )  <-> 
( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) ) )
3534abbidv 2589 . . . . 5  |-  ( t  =  T  ->  { f  |  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) }  =  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) } )
36 fvex 5889 . . . . . . . 8  |-  ( Base `  S )  e.  _V
3710, 36eqeltri 2545 . . . . . . 7  |-  X  e. 
_V
38 fvex 5889 . . . . . . . 8  |-  ( Base `  T )  e.  _V
3925, 38eqeltri 2545 . . . . . . 7  |-  Y  e. 
_V
40 mapex 7496 . . . . . . 7  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { f  |  f : X --> Y }  e.  _V )
4137, 39, 40mp2an 686 . . . . . 6  |-  { f  |  f : X --> Y }  e.  _V
42 simpl 464 . . . . . . 7  |-  ( ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) )  ->  f : X
--> Y )
4342ss2abi 3487 . . . . . 6  |-  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) }  C_  { f  |  f : X --> Y }
4441, 43ssexi 4541 . . . . 5  |-  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) }  e.  _V
4523, 35, 1, 44ovmpt2 6451 . . . 4  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) } )
4645eleq2d 2534 . . 3  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) } ) )
47 fex 6155 . . . . . 6  |-  ( ( F : X --> Y  /\  X  e.  _V )  ->  F  e.  _V )
4837, 47mpan2 685 . . . . 5  |-  ( F : X --> Y  ->  F  e.  _V )
4948adantr 472 . . . 4  |-  ( ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) )  ->  F  e.  _V )
50 feq1 5720 . . . . 5  |-  ( f  =  F  ->  (
f : X --> Y  <->  F : X
--> Y ) )
51 fveq1 5878 . . . . . . 7  |-  ( f  =  F  ->  (
f `  ( u  .+  v ) )  =  ( F `  (
u  .+  v )
) )
52 fveq1 5878 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  u )  =  ( F `  u ) )
53 fveq1 5878 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  v )  =  ( F `  v ) )
5452, 53oveq12d 6326 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  u
)  .+^  ( f `  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) )
5551, 54eqeq12d 2486 . . . . . 6  |-  ( f  =  F  ->  (
( f `  (
u  .+  v )
)  =  ( ( f `  u ) 
.+^  ( f `  v ) )  <->  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
56552ralbidv 2832 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) 
.+^  ( f `  v ) )  <->  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
5750, 56anbi12d 725 . . . 4  |-  ( f  =  F  ->  (
( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) )  <-> 
( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u ) 
.+^  ( F `  v ) ) ) ) )
5849, 57elab3 3180 . . 3  |-  ( F  e.  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) }  <->  ( F : X
--> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
5946, 58syl6bb 269 . 2  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
602, 59biadan2 654 1  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457   A.wral 2756   _Vcvv 3031   [.wsbc 3255   -->wf 5585   ` cfv 5589  (class class class)co 6308   Basecbs 15199   +g cplusg 15268   Grpcgrp 16747    GrpHom cghm 16958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-ghm 16959
This theorem is referenced by:  isghm3  16962  ghmgrp1  16963  ghmgrp2  16964  ghmf  16965  ghmlin  16966  isghmd  16970  idghm  16976  ghmf1o  16990  islmhm2  18339  expghm  19144  mulgghm2  19145  pi1xfr  22164  pi1coghm  22170  rhmopp  28656  isrnghm  40400
  Copyright terms: Public domain W3C validator