MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghm Structured version   Unicode version

Theorem isghm 15750
Description: Property of being a homomorphism of groups. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
isghm.w  |-  X  =  ( Base `  S
)
isghm.x  |-  Y  =  ( Base `  T
)
isghm.a  |-  .+  =  ( +g  `  S )
isghm.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
isghm  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Distinct variable groups:    v, u, S    u, T, v    u, X, v    u,  .+ , v    u, Y, v    u,  .+^ , v    u, F, v

Proof of Theorem isghm
Dummy variables  t 
s  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 15748 . . 3  |-  GrpHom  =  ( s  e.  Grp , 
t  e.  Grp  |->  { f  |  [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) } )
21elmpt2cl 6307 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( S  e.  Grp  /\  T  e. 
Grp ) )
3 fvex 5704 . . . . . . . 8  |-  ( Base `  s )  e.  _V
4 feq2 5546 . . . . . . . . 9  |-  ( w  =  ( Base `  s
)  ->  ( f : w --> ( Base `  t )  <->  f :
( Base `  s ) --> ( Base `  t )
) )
5 raleq 2920 . . . . . . . . . 10  |-  ( w  =  ( Base `  s
)  ->  ( A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) ) ) )
65raleqbi1dv 2928 . . . . . . . . 9  |-  ( w  =  ( Base `  s
)  ->  ( A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. u  e.  ( Base `  s ) A. v  e.  ( Base `  s ) ( f `
 ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) ) )
74, 6anbi12d 710 . . . . . . . 8  |-  ( w  =  ( Base `  s
)  ->  ( (
f : w --> ( Base `  t )  /\  A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) )  <->  ( f : ( Base `  s
) --> ( Base `  t
)  /\  A. u  e.  ( Base `  s
) A. v  e.  ( Base `  s
) ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) ) )
83, 7sbcie 3224 . . . . . . 7  |-  ( [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t )  /\  A. u  e.  w  A. v  e.  w  (
f `  ( u
( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) ) )  <->  ( f : ( Base `  s
) --> ( Base `  t
)  /\  A. u  e.  ( Base `  s
) A. v  e.  ( Base `  s
) ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) )
9 fveq2 5694 . . . . . . . . . 10  |-  ( s  =  S  ->  ( Base `  s )  =  ( Base `  S
) )
10 isghm.w . . . . . . . . . 10  |-  X  =  ( Base `  S
)
119, 10syl6eqr 2493 . . . . . . . . 9  |-  ( s  =  S  ->  ( Base `  s )  =  X )
1211feq2d 5550 . . . . . . . 8  |-  ( s  =  S  ->  (
f : ( Base `  s ) --> ( Base `  t )  <->  f : X
--> ( Base `  t
) ) )
13 fveq2 5694 . . . . . . . . . . . . . 14  |-  ( s  =  S  ->  ( +g  `  s )  =  ( +g  `  S
) )
14 isghm.a . . . . . . . . . . . . . 14  |-  .+  =  ( +g  `  S )
1513, 14syl6eqr 2493 . . . . . . . . . . . . 13  |-  ( s  =  S  ->  ( +g  `  s )  = 
.+  )
1615oveqd 6111 . . . . . . . . . . . 12  |-  ( s  =  S  ->  (
u ( +g  `  s
) v )  =  ( u  .+  v
) )
1716fveq2d 5698 . . . . . . . . . . 11  |-  ( s  =  S  ->  (
f `  ( u
( +g  `  s ) v ) )  =  ( f `  (
u  .+  v )
) )
1817eqeq1d 2451 . . . . . . . . . 10  |-  ( s  =  S  ->  (
( f `  (
u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) )  <->  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) )
1911, 18raleqbidv 2934 . . . . . . . . 9  |-  ( s  =  S  ->  ( A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) )  <->  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) )
2011, 19raleqbidv 2934 . . . . . . . 8  |-  ( s  =  S  ->  ( A. u  e.  ( Base `  s ) A. v  e.  ( Base `  s ) ( f `
 ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t ) ( f `
 v ) )  <->  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) )
2112, 20anbi12d 710 . . . . . . 7  |-  ( s  =  S  ->  (
( f : (
Base `  s ) --> ( Base `  t )  /\  A. u  e.  (
Base `  s ) A. v  e.  ( Base `  s ) ( f `  ( u ( +g  `  s
) v ) )  =  ( ( f `
 u ) ( +g  `  t ) ( f `  v
) ) )  <->  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) ) )
228, 21syl5bb 257 . . . . . 6  |-  ( s  =  S  ->  ( [. ( Base `  s
)  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) )  <-> 
( f : X --> ( Base `  t )  /\  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) ) )
2322abbidv 2560 . . . . 5  |-  ( s  =  S  ->  { f  |  [. ( Base `  s )  /  w ]. ( f : w --> ( Base `  t
)  /\  A. u  e.  w  A. v  e.  w  ( f `  ( u ( +g  `  s ) v ) )  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) ) }  =  { f  |  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) } )
24 fveq2 5694 . . . . . . . . 9  |-  ( t  =  T  ->  ( Base `  t )  =  ( Base `  T
) )
25 isghm.x . . . . . . . . 9  |-  Y  =  ( Base `  T
)
2624, 25syl6eqr 2493 . . . . . . . 8  |-  ( t  =  T  ->  ( Base `  t )  =  Y )
27 feq3 5547 . . . . . . . 8  |-  ( (
Base `  t )  =  Y  ->  ( f : X --> ( Base `  t )  <->  f : X
--> Y ) )
2826, 27syl 16 . . . . . . 7  |-  ( t  =  T  ->  (
f : X --> ( Base `  t )  <->  f : X
--> Y ) )
29 fveq2 5694 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( +g  `  t )  =  ( +g  `  T
) )
30 isghm.b . . . . . . . . . . 11  |-  .+^  =  ( +g  `  T )
3129, 30syl6eqr 2493 . . . . . . . . . 10  |-  ( t  =  T  ->  ( +g  `  t )  = 
.+^  )
3231oveqd 6111 . . . . . . . . 9  |-  ( t  =  T  ->  (
( f `  u
) ( +g  `  t
) ( f `  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) )
3332eqeq2d 2454 . . . . . . . 8  |-  ( t  =  T  ->  (
( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) )  <->  ( f `  ( u  .+  v
) )  =  ( ( f `  u
)  .+^  ( f `  v ) ) ) )
34332ralbidv 2760 . . . . . . 7  |-  ( t  =  T  ->  ( A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) )  <->  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
)  .+^  ( f `  v ) ) ) )
3528, 34anbi12d 710 . . . . . 6  |-  ( t  =  T  ->  (
( f : X --> ( Base `  t )  /\  A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) ( +g  `  t
) ( f `  v ) ) )  <-> 
( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) ) )
3635abbidv 2560 . . . . 5  |-  ( t  =  T  ->  { f  |  ( f : X --> ( Base `  t
)  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v
) )  =  ( ( f `  u
) ( +g  `  t
) ( f `  v ) ) ) }  =  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) } )
37 fvex 5704 . . . . . . . 8  |-  ( Base `  S )  e.  _V
3810, 37eqeltri 2513 . . . . . . 7  |-  X  e. 
_V
39 fvex 5704 . . . . . . . 8  |-  ( Base `  T )  e.  _V
4025, 39eqeltri 2513 . . . . . . 7  |-  Y  e. 
_V
41 mapex 7223 . . . . . . 7  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  { f  |  f : X --> Y }  e.  _V )
4238, 40, 41mp2an 672 . . . . . 6  |-  { f  |  f : X --> Y }  e.  _V
43 simpl 457 . . . . . . 7  |-  ( ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) )  ->  f : X
--> Y )
4443ss2abi 3427 . . . . . 6  |-  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) }  C_  { f  |  f : X --> Y }
4542, 44ssexi 4440 . . . . 5  |-  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) }  e.  _V
4623, 36, 1, 45ovmpt2 6229 . . . 4  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( S  GrpHom  T )  =  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) } )
4746eleq2d 2510 . . 3  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  F  e.  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  (
f `  ( u  .+  v ) )  =  ( ( f `  u )  .+^  ( f `
 v ) ) ) } ) )
48 fex 5953 . . . . . 6  |-  ( ( F : X --> Y  /\  X  e.  _V )  ->  F  e.  _V )
4938, 48mpan2 671 . . . . 5  |-  ( F : X --> Y  ->  F  e.  _V )
5049adantr 465 . . . 4  |-  ( ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) )  ->  F  e.  _V )
51 feq1 5545 . . . . 5  |-  ( f  =  F  ->  (
f : X --> Y  <->  F : X
--> Y ) )
52 fveq1 5693 . . . . . . 7  |-  ( f  =  F  ->  (
f `  ( u  .+  v ) )  =  ( F `  (
u  .+  v )
) )
53 fveq1 5693 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  u )  =  ( F `  u ) )
54 fveq1 5693 . . . . . . . 8  |-  ( f  =  F  ->  (
f `  v )  =  ( F `  v ) )
5553, 54oveq12d 6112 . . . . . . 7  |-  ( f  =  F  ->  (
( f `  u
)  .+^  ( f `  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) )
5652, 55eqeq12d 2457 . . . . . 6  |-  ( f  =  F  ->  (
( f `  (
u  .+  v )
)  =  ( ( f `  u ) 
.+^  ( f `  v ) )  <->  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
57562ralbidv 2760 . . . . 5  |-  ( f  =  F  ->  ( A. u  e.  X  A. v  e.  X  ( f `  (
u  .+  v )
)  =  ( ( f `  u ) 
.+^  ( f `  v ) )  <->  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
5851, 57anbi12d 710 . . . 4  |-  ( f  =  F  ->  (
( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) )  <-> 
( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u ) 
.+^  ( F `  v ) ) ) ) )
5950, 58elab3 3116 . . 3  |-  ( F  e.  { f  |  ( f : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( f `  ( u  .+  v ) )  =  ( ( f `  u ) 
.+^  ( f `  v ) ) ) }  <->  ( F : X
--> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v
) )  =  ( ( F `  u
)  .+^  ( F `  v ) ) ) )
6047, 59syl6bb 261 . 2  |-  ( ( S  e.  Grp  /\  T  e.  Grp )  ->  ( F  e.  ( S  GrpHom  T )  <->  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
612, 60biadan2 642 1  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. u  e.  X  A. v  e.  X  ( F `  ( u  .+  v ) )  =  ( ( F `  u )  .+^  ( F `
 v ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   A.wral 2718   _Vcvv 2975   [.wsbc 3189   -->wf 5417   ` cfv 5421  (class class class)co 6094   Basecbs 14177   +g cplusg 14241   Grpcgrp 15413    GrpHom cghm 15747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-ghm 15748
This theorem is referenced by:  isghm3  15751  ghmgrp1  15752  ghmgrp2  15753  ghmf  15754  ghmlin  15755  isghmd  15759  idghm  15765  ghmf1o  15779  islmhm2  17122  expghm  17926  expghmOLD  17927  mulgghm2  17928  mulgghm2OLD  17931  pi1xfr  20630  pi1coghm  20636  rhmopp  26290
  Copyright terms: Public domain W3C validator