MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Unicode version

Theorem isga 15809
Description: The predicate "is a (left) group action." The group  G is said to act on the base set  Y of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element  g of  G is a permutation of the elements of  Y (see gapm 15824). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1  |-  X  =  ( Base `  G
)
isga.2  |-  .+  =  ( +g  `  G )
isga.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isga  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    y, X, z    x, Y, y, z   
x,  .(+) , y, z
Allowed substitution hints:    .+ ( x, y, z)    X( x)    .0. ( x, y, z)

Proof of Theorem isga
Dummy variables  g 
b  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 15808 . . 3  |-  GrpAct  =  ( g  e.  Grp , 
s  e.  _V  |->  [_ ( Base `  g )  /  b ]_ {
m  e.  ( s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) } )
21elmpt2cl 6304 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( G  e. 
Grp  /\  Y  e.  _V ) )
3 fvex 5701 . . . . . . . 8  |-  ( Base `  g )  e.  _V
43a1i 11 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  e.  _V )
5 simplr 754 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  s  =  Y )
6 id 22 . . . . . . . . . . 11  |-  ( b  =  ( Base `  g
)  ->  b  =  ( Base `  g )
)
7 simpl 457 . . . . . . . . . . . . 13  |-  ( ( g  =  G  /\  s  =  Y )  ->  g  =  G )
87fveq2d 5695 . . . . . . . . . . . 12  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  ( Base `  G ) )
9 isga.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
108, 9syl6eqr 2493 . . . . . . . . . . 11  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  X )
116, 10sylan9eqr 2497 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  b  =  X )
1211, 5xpeq12d 4865 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
b  X.  s )  =  ( X  X.  Y ) )
135, 12oveq12d 6109 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
s  ^m  ( b  X.  s ) )  =  ( Y  ^m  ( X  X.  Y ) ) )
14 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  g  =  G )
1514fveq2d 5695 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  ( 0g `  G
) )
16 isga.3 . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  G )
1715, 16syl6eqr 2493 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  .0.  )
1817oveq1d 6106 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( 0g `  g
) m x )  =  (  .0.  m x ) )
1918eqeq1d 2451 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( 0g `  g ) m x )  =  x  <->  (  .0.  m x )  =  x ) )
2014fveq2d 5695 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  =  ( +g  `  G
) )
21 isga.2 . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  G )
2220, 21syl6eqr 2493 . . . . . . . . . . . . . . 15  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  = 
.+  )
2322oveqd 6108 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
y ( +g  `  g
) z )  =  ( y  .+  z
) )
2423oveq1d 6106 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( y ( +g  `  g ) z ) m x )  =  ( ( y  .+  z ) m x ) )
2524eqeq1d 2451 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2611, 25raleqbidv 2931 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2711, 26raleqbidv 2931 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. y  e.  b  A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2819, 27anbi12d 710 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) ) )
295, 28raleqbidv 2931 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. x  e.  s 
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) ) )
3013, 29rabeqbidv 2967 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  { m  e.  ( s  ^m  (
b  X.  s ) )  |  A. x  e.  s  ( (
( 0g `  g
) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  (
( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) ) ) }  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
314, 30csbied 3314 . . . . . 6  |-  ( ( g  =  G  /\  s  =  Y )  ->  [_ ( Base `  g
)  /  b ]_ { m  e.  (
s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) }  =  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
32 ovex 6116 . . . . . . 7  |-  ( Y  ^m  ( X  X.  Y ) )  e. 
_V
3332rabex 4443 . . . . . 6  |-  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  e.  _V
3431, 1, 33ovmpt2a 6221 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( G  GrpAct  Y )  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) } )
3534eleq2d 2510 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  .(+)  e.  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } ) )
36 oveq 6097 . . . . . . . 8  |-  ( m  =  .(+)  ->  (  .0.  m x )  =  (  .0.  .(+)  x ) )
3736eqeq1d 2451 . . . . . . 7  |-  ( m  =  .(+)  ->  ( (  .0.  m x )  =  x  <->  (  .0.  .(+) 
x )  =  x ) )
38 oveq 6097 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( ( y  .+  z ) m x )  =  ( ( y  .+  z )  .(+)  x ) )
39 oveq 6097 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z m x ) ) )
40 oveq 6097 . . . . . . . . . . 11  |-  ( m  =  .(+)  ->  ( z m x )  =  ( z  .(+)  x ) )
4140oveq2d 6107 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y 
.(+)  ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4239, 41eqtrd 2475 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4338, 42eqeq12d 2457 . . . . . . . 8  |-  ( m  =  .(+)  ->  ( ( ( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
44432ralbidv 2757 . . . . . . 7  |-  ( m  =  .(+)  ->  ( A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
4537, 44anbi12d 710 . . . . . 6  |-  ( m  =  .(+)  ->  ( ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4645ralbidv 2735 . . . . 5  |-  ( m  =  .(+)  ->  ( A. x  e.  Y  (
(  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4746elrab 3117 . . . 4  |-  (  .(+)  e. 
{ m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) )
4835, 47syl6bb 261 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
49 simpr 461 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  Y  e.  _V )
50 fvex 5701 . . . . . . 7  |-  ( Base `  G )  e.  _V
519, 50eqeltri 2513 . . . . . 6  |-  X  e. 
_V
52 xpexg 6507 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5351, 49, 52sylancr 663 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
54 elmapg 7227 . . . . 5  |-  ( ( Y  e.  _V  /\  ( X  X.  Y
)  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5549, 53, 54syl2anc 661 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5655anbi1d 704 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) )  <-> 
(  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
5748, 56bitrd 253 . 2  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. x  e.  Y  (
(  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
582, 57biadan2 642 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   {crab 2719   _Vcvv 2972   [_csb 3288    X. cxp 4838   -->wf 5414   ` cfv 5418  (class class class)co 6091    ^m cmap 7214   Basecbs 14174   +g cplusg 14238   0gc0g 14378   Grpcgrp 15410    GrpAct cga 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216  df-ga 15808
This theorem is referenced by:  gagrp  15810  gaset  15811  gagrpid  15812  gaf  15813  gaass  15815  ga0  15816  gaid  15817  subgga  15818  gass  15819  gasubg  15820  lactghmga  15909  sylow1lem2  16098  sylow2blem2  16120  sylow3lem1  16126
  Copyright terms: Public domain W3C validator