MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Unicode version

Theorem isga 15802
Description: The predicate "is a (left) group action." The group  G is said to act on the base set  Y of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element  g of  G is a permutation of the elements of  Y (see gapm 15817). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1  |-  X  =  ( Base `  G
)
isga.2  |-  .+  =  ( +g  `  G )
isga.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isga  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    y, X, z    x, Y, y, z   
x,  .(+) , y, z
Allowed substitution hints:    .+ ( x, y, z)    X( x)    .0. ( x, y, z)

Proof of Theorem isga
Dummy variables  g 
b  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 15801 . . 3  |-  GrpAct  =  ( g  e.  Grp , 
s  e.  _V  |->  [_ ( Base `  g )  /  b ]_ {
m  e.  ( s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) } )
21elmpt2cl 6303 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( G  e. 
Grp  /\  Y  e.  _V ) )
3 fvex 5698 . . . . . . . 8  |-  ( Base `  g )  e.  _V
43a1i 11 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  e.  _V )
5 simplr 749 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  s  =  Y )
6 id 22 . . . . . . . . . . 11  |-  ( b  =  ( Base `  g
)  ->  b  =  ( Base `  g )
)
7 simpl 454 . . . . . . . . . . . . 13  |-  ( ( g  =  G  /\  s  =  Y )  ->  g  =  G )
87fveq2d 5692 . . . . . . . . . . . 12  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  ( Base `  G ) )
9 isga.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
108, 9syl6eqr 2491 . . . . . . . . . . 11  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  X )
116, 10sylan9eqr 2495 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  b  =  X )
1211, 5xpeq12d 4861 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
b  X.  s )  =  ( X  X.  Y ) )
135, 12oveq12d 6108 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
s  ^m  ( b  X.  s ) )  =  ( Y  ^m  ( X  X.  Y ) ) )
14 simpll 748 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  g  =  G )
1514fveq2d 5692 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  ( 0g `  G
) )
16 isga.3 . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  G )
1715, 16syl6eqr 2491 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  .0.  )
1817oveq1d 6105 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( 0g `  g
) m x )  =  (  .0.  m x ) )
1918eqeq1d 2449 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( 0g `  g ) m x )  =  x  <->  (  .0.  m x )  =  x ) )
2014fveq2d 5692 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  =  ( +g  `  G
) )
21 isga.2 . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  G )
2220, 21syl6eqr 2491 . . . . . . . . . . . . . . 15  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  = 
.+  )
2322oveqd 6107 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
y ( +g  `  g
) z )  =  ( y  .+  z
) )
2423oveq1d 6105 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( y ( +g  `  g ) z ) m x )  =  ( ( y  .+  z ) m x ) )
2524eqeq1d 2449 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2611, 25raleqbidv 2929 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2711, 26raleqbidv 2929 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. y  e.  b  A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2819, 27anbi12d 705 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) ) )
295, 28raleqbidv 2929 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. x  e.  s 
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) ) )
3013, 29rabeqbidv 2965 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  { m  e.  ( s  ^m  (
b  X.  s ) )  |  A. x  e.  s  ( (
( 0g `  g
) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  (
( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) ) ) }  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
314, 30csbied 3311 . . . . . 6  |-  ( ( g  =  G  /\  s  =  Y )  ->  [_ ( Base `  g
)  /  b ]_ { m  e.  (
s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) }  =  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
32 ovex 6115 . . . . . . 7  |-  ( Y  ^m  ( X  X.  Y ) )  e. 
_V
3332rabex 4440 . . . . . 6  |-  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  e.  _V
3431, 1, 33ovmpt2a 6220 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( G  GrpAct  Y )  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) } )
3534eleq2d 2508 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  .(+)  e.  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } ) )
36 oveq 6096 . . . . . . . 8  |-  ( m  =  .(+)  ->  (  .0.  m x )  =  (  .0.  .(+)  x ) )
3736eqeq1d 2449 . . . . . . 7  |-  ( m  =  .(+)  ->  ( (  .0.  m x )  =  x  <->  (  .0.  .(+) 
x )  =  x ) )
38 oveq 6096 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( ( y  .+  z ) m x )  =  ( ( y  .+  z )  .(+)  x ) )
39 oveq 6096 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z m x ) ) )
40 oveq 6096 . . . . . . . . . . 11  |-  ( m  =  .(+)  ->  ( z m x )  =  ( z  .(+)  x ) )
4140oveq2d 6106 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y 
.(+)  ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4239, 41eqtrd 2473 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4338, 42eqeq12d 2455 . . . . . . . 8  |-  ( m  =  .(+)  ->  ( ( ( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
44432ralbidv 2755 . . . . . . 7  |-  ( m  =  .(+)  ->  ( A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
4537, 44anbi12d 705 . . . . . 6  |-  ( m  =  .(+)  ->  ( ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4645ralbidv 2733 . . . . 5  |-  ( m  =  .(+)  ->  ( A. x  e.  Y  (
(  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4746elrab 3114 . . . 4  |-  (  .(+)  e. 
{ m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) )
4835, 47syl6bb 261 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
49 simpr 458 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  Y  e.  _V )
50 fvex 5698 . . . . . . 7  |-  ( Base `  G )  e.  _V
519, 50eqeltri 2511 . . . . . 6  |-  X  e. 
_V
52 xpexg 6506 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5351, 49, 52sylancr 658 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
54 elmapg 7223 . . . . 5  |-  ( ( Y  e.  _V  /\  ( X  X.  Y
)  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5549, 53, 54syl2anc 656 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5655anbi1d 699 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) )  <-> 
(  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
5748, 56bitrd 253 . 2  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. x  e.  Y  (
(  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
582, 57biadan2 637 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   {crab 2717   _Vcvv 2970   [_csb 3285    X. cxp 4834   -->wf 5411   ` cfv 5415  (class class class)co 6090    ^m cmap 7210   Basecbs 14170   +g cplusg 14234   0gc0g 14374   Grpcgrp 15406    GrpAct cga 15800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7212  df-ga 15801
This theorem is referenced by:  gagrp  15803  gaset  15804  gagrpid  15805  gaf  15806  gaass  15808  ga0  15809  gaid  15810  subgga  15811  gass  15812  gasubg  15813  lactghmga  15902  sylow1lem2  16091  sylow2blem2  16113  sylow3lem1  16119
  Copyright terms: Public domain W3C validator