MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Unicode version

Theorem isga 16896
Description: The predicate "is a (left) group action." The group  G is said to act on the base set  Y of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element  g of  G is a permutation of the elements of  Y (see gapm 16911). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1  |-  X  =  ( Base `  G
)
isga.2  |-  .+  =  ( +g  `  G )
isga.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isga  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    y, X, z    x, Y, y, z   
x,  .(+) , y, z
Allowed substitution hints:    .+ ( x, y, z)    X( x)    .0. ( x, y, z)

Proof of Theorem isga
Dummy variables  g 
b  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 16895 . . 3  |-  GrpAct  =  ( g  e.  Grp , 
s  e.  _V  |->  [_ ( Base `  g )  /  b ]_ {
m  e.  ( s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) } )
21elmpt2cl 6525 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( G  e. 
Grp  /\  Y  e.  _V ) )
3 fvex 5891 . . . . . . . 8  |-  ( Base `  g )  e.  _V
43a1i 11 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  e.  _V )
5 simplr 760 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  s  =  Y )
6 id 23 . . . . . . . . . . 11  |-  ( b  =  ( Base `  g
)  ->  b  =  ( Base `  g )
)
7 simpl 458 . . . . . . . . . . . . 13  |-  ( ( g  =  G  /\  s  =  Y )  ->  g  =  G )
87fveq2d 5885 . . . . . . . . . . . 12  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  ( Base `  G ) )
9 isga.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
108, 9syl6eqr 2488 . . . . . . . . . . 11  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  X )
116, 10sylan9eqr 2492 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  b  =  X )
1211, 5xpeq12d 4879 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
b  X.  s )  =  ( X  X.  Y ) )
135, 12oveq12d 6323 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
s  ^m  ( b  X.  s ) )  =  ( Y  ^m  ( X  X.  Y ) ) )
14 simpll 758 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  g  =  G )
1514fveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  ( 0g `  G
) )
16 isga.3 . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  G )
1715, 16syl6eqr 2488 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  .0.  )
1817oveq1d 6320 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( 0g `  g
) m x )  =  (  .0.  m x ) )
1918eqeq1d 2431 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( 0g `  g ) m x )  =  x  <->  (  .0.  m x )  =  x ) )
2014fveq2d 5885 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  =  ( +g  `  G
) )
21 isga.2 . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  G )
2220, 21syl6eqr 2488 . . . . . . . . . . . . . . 15  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  = 
.+  )
2322oveqd 6322 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
y ( +g  `  g
) z )  =  ( y  .+  z
) )
2423oveq1d 6320 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( y ( +g  `  g ) z ) m x )  =  ( ( y  .+  z ) m x ) )
2524eqeq1d 2431 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2611, 25raleqbidv 3046 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2711, 26raleqbidv 3046 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. y  e.  b  A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2819, 27anbi12d 715 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) ) )
295, 28raleqbidv 3046 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. x  e.  s 
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) ) )
3013, 29rabeqbidv 3082 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  { m  e.  ( s  ^m  (
b  X.  s ) )  |  A. x  e.  s  ( (
( 0g `  g
) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  (
( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) ) ) }  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
314, 30csbied 3428 . . . . . 6  |-  ( ( g  =  G  /\  s  =  Y )  ->  [_ ( Base `  g
)  /  b ]_ { m  e.  (
s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) }  =  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
32 ovex 6333 . . . . . . 7  |-  ( Y  ^m  ( X  X.  Y ) )  e. 
_V
3332rabex 4576 . . . . . 6  |-  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  e.  _V
3431, 1, 33ovmpt2a 6441 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( G  GrpAct  Y )  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) } )
3534eleq2d 2499 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  .(+)  e.  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } ) )
36 oveq 6311 . . . . . . . 8  |-  ( m  =  .(+)  ->  (  .0.  m x )  =  (  .0.  .(+)  x ) )
3736eqeq1d 2431 . . . . . . 7  |-  ( m  =  .(+)  ->  ( (  .0.  m x )  =  x  <->  (  .0.  .(+) 
x )  =  x ) )
38 oveq 6311 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( ( y  .+  z ) m x )  =  ( ( y  .+  z )  .(+)  x ) )
39 oveq 6311 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z m x ) ) )
40 oveq 6311 . . . . . . . . . . 11  |-  ( m  =  .(+)  ->  ( z m x )  =  ( z  .(+)  x ) )
4140oveq2d 6321 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y 
.(+)  ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4239, 41eqtrd 2470 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4338, 42eqeq12d 2451 . . . . . . . 8  |-  ( m  =  .(+)  ->  ( ( ( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
44432ralbidv 2876 . . . . . . 7  |-  ( m  =  .(+)  ->  ( A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
4537, 44anbi12d 715 . . . . . 6  |-  ( m  =  .(+)  ->  ( ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4645ralbidv 2871 . . . . 5  |-  ( m  =  .(+)  ->  ( A. x  e.  Y  (
(  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4746elrab 3235 . . . 4  |-  (  .(+)  e. 
{ m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) )
4835, 47syl6bb 264 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
49 simpr 462 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  Y  e.  _V )
50 fvex 5891 . . . . . . 7  |-  ( Base `  G )  e.  _V
519, 50eqeltri 2513 . . . . . 6  |-  X  e. 
_V
52 xpexg 6607 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5351, 49, 52sylancr 667 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5449, 53elmapd 7494 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5554anbi1d 709 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) )  <-> 
(  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
5648, 55bitrd 256 . 2  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. x  e.  Y  (
(  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
572, 56biadan2 646 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   {crab 2786   _Vcvv 3087   [_csb 3401    X. cxp 4852   -->wf 5597   ` cfv 5601  (class class class)co 6305    ^m cmap 7480   Basecbs 15084   +g cplusg 15152   0gc0g 15297   Grpcgrp 16620    GrpAct cga 16894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7482  df-ga 16895
This theorem is referenced by:  gagrp  16897  gaset  16898  gagrpid  16899  gaf  16900  gaass  16902  ga0  16903  gaid  16904  subgga  16905  gass  16906  gasubg  16907  lactghmga  16996  sylow1lem2  17186  sylow2blem2  17208  sylow3lem1  17214
  Copyright terms: Public domain W3C validator