MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isga Structured version   Visualization version   Unicode version

Theorem isga 16993
Description: The predicate "is a (left) group action." The group  G is said to act on the base set  Y of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element  g of  G is a permutation of the elements of  Y (see gapm 17008). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
isga.1  |-  X  =  ( Base `  G
)
isga.2  |-  .+  =  ( +g  `  G )
isga.3  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isga  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Distinct variable groups:    x, y,
z, G    y, X, z    x, Y, y, z   
x,  .(+) , y, z
Allowed substitution hints:    .+ ( x, y, z)    X( x)    .0. ( x, y, z)

Proof of Theorem isga
Dummy variables  g 
b  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ga 16992 . . 3  |-  GrpAct  =  ( g  e.  Grp , 
s  e.  _V  |->  [_ ( Base `  g )  /  b ]_ {
m  e.  ( s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) } )
21elmpt2cl 6537 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  ->  ( G  e. 
Grp  /\  Y  e.  _V ) )
3 fvex 5897 . . . . . . . 8  |-  ( Base `  g )  e.  _V
43a1i 11 . . . . . . 7  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  e.  _V )
5 simplr 767 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  s  =  Y )
6 id 22 . . . . . . . . . . 11  |-  ( b  =  ( Base `  g
)  ->  b  =  ( Base `  g )
)
7 simpl 463 . . . . . . . . . . . . 13  |-  ( ( g  =  G  /\  s  =  Y )  ->  g  =  G )
87fveq2d 5891 . . . . . . . . . . . 12  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  ( Base `  G ) )
9 isga.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
108, 9syl6eqr 2513 . . . . . . . . . . 11  |-  ( ( g  =  G  /\  s  =  Y )  ->  ( Base `  g
)  =  X )
116, 10sylan9eqr 2517 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  b  =  X )
1211, 5xpeq12d 4877 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
b  X.  s )  =  ( X  X.  Y ) )
135, 12oveq12d 6332 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
s  ^m  ( b  X.  s ) )  =  ( Y  ^m  ( X  X.  Y ) ) )
14 simpll 765 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  g  =  G )
1514fveq2d 5891 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  ( 0g `  G
) )
16 isga.3 . . . . . . . . . . . . 13  |-  .0.  =  ( 0g `  G )
1715, 16syl6eqr 2513 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( 0g `  g )  =  .0.  )
1817oveq1d 6329 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( 0g `  g
) m x )  =  (  .0.  m x ) )
1918eqeq1d 2463 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( 0g `  g ) m x )  =  x  <->  (  .0.  m x )  =  x ) )
2014fveq2d 5891 . . . . . . . . . . . . . . . 16  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  =  ( +g  `  G
) )
21 isga.2 . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  G )
2220, 21syl6eqr 2513 . . . . . . . . . . . . . . 15  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( +g  `  g )  = 
.+  )
2322oveqd 6331 . . . . . . . . . . . . . 14  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
y ( +g  `  g
) z )  =  ( y  .+  z
) )
2423oveq1d 6329 . . . . . . . . . . . . 13  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( y ( +g  `  g ) z ) m x )  =  ( ( y  .+  z ) m x ) )
2524eqeq1d 2463 . . . . . . . . . . . 12  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2611, 25raleqbidv 3012 . . . . . . . . . . 11  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2711, 26raleqbidv 3012 . . . . . . . . . 10  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. y  e.  b  A. z  e.  b 
( ( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) )
2819, 27anbi12d 722 . . . . . . . . 9  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  (
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) ) )
295, 28raleqbidv 3012 . . . . . . . 8  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  ( A. x  e.  s 
( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) ) )
3013, 29rabeqbidv 3051 . . . . . . 7  |-  ( ( ( g  =  G  /\  s  =  Y )  /\  b  =  ( Base `  g
) )  ->  { m  e.  ( s  ^m  (
b  X.  s ) )  |  A. x  e.  s  ( (
( 0g `  g
) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  (
( y ( +g  `  g ) z ) m x )  =  ( y m ( z m x ) ) ) }  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
314, 30csbied 3401 . . . . . 6  |-  ( ( g  =  G  /\  s  =  Y )  ->  [_ ( Base `  g
)  /  b ]_ { m  e.  (
s  ^m  ( b  X.  s ) )  | 
A. x  e.  s  ( ( ( 0g
`  g ) m x )  =  x  /\  A. y  e.  b  A. z  e.  b  ( ( y ( +g  `  g
) z ) m x )  =  ( y m ( z m x ) ) ) }  =  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } )
32 ovex 6342 . . . . . . 7  |-  ( Y  ^m  ( X  X.  Y ) )  e. 
_V
3332rabex 4567 . . . . . 6  |-  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  e.  _V
3431, 1, 33ovmpt2a 6453 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( G  GrpAct  Y )  =  { m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) } )
3534eleq2d 2524 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  .(+)  e.  {
m  e.  ( Y  ^m  ( X  X.  Y ) )  | 
A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z ) m x )  =  ( y m ( z m x ) ) ) } ) )
36 oveq 6320 . . . . . . . 8  |-  ( m  =  .(+)  ->  (  .0.  m x )  =  (  .0.  .(+)  x ) )
3736eqeq1d 2463 . . . . . . 7  |-  ( m  =  .(+)  ->  ( (  .0.  m x )  =  x  <->  (  .0.  .(+) 
x )  =  x ) )
38 oveq 6320 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( ( y  .+  z ) m x )  =  ( ( y  .+  z )  .(+)  x ) )
39 oveq 6320 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z m x ) ) )
40 oveq 6320 . . . . . . . . . . 11  |-  ( m  =  .(+)  ->  ( z m x )  =  ( z  .(+)  x ) )
4140oveq2d 6330 . . . . . . . . . 10  |-  ( m  =  .(+)  ->  ( y 
.(+)  ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4239, 41eqtrd 2495 . . . . . . . . 9  |-  ( m  =  .(+)  ->  ( y m ( z m x ) )  =  ( y  .(+)  ( z 
.(+)  x ) ) )
4338, 42eqeq12d 2476 . . . . . . . 8  |-  ( m  =  .(+)  ->  ( ( ( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
44432ralbidv 2843 . . . . . . 7  |-  ( m  =  .(+)  ->  ( A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) )  <->  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) )
4537, 44anbi12d 722 . . . . . 6  |-  ( m  =  .(+)  ->  ( ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4645ralbidv 2838 . . . . 5  |-  ( m  =  .(+)  ->  ( A. x  e.  Y  (
(  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
) m x )  =  ( y m ( z m x ) ) )  <->  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )  .(+)  x )  =  ( y  .(+)  ( z  .(+)  x ) ) ) ) )
4746elrab 3207 . . . 4  |-  (  .(+)  e. 
{ m  e.  ( Y  ^m  ( X  X.  Y ) )  |  A. x  e.  Y  ( (  .0.  m x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( (
y  .+  z )
m x )  =  ( y m ( z m x ) ) ) }  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) )
4835, 47syl6bb 269 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
49 simpr 467 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  Y  e.  _V )
50 fvex 5897 . . . . . . 7  |-  ( Base `  G )  e.  _V
519, 50eqeltri 2535 . . . . . 6  |-  X  e. 
_V
52 xpexg 6619 . . . . . 6  |-  ( ( X  e.  _V  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5351, 49, 52sylancr 674 . . . . 5  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( X  X.  Y
)  e.  _V )
5449, 53elmapd 7511 . . . 4  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  <->  .(+)  : ( X  X.  Y ) --> Y ) )
5554anbi1d 716 . . 3  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  ( (  .(+)  e.  ( Y  ^m  ( X  X.  Y ) )  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) )  <-> 
(  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  ( ( y 
.+  z )  .(+)  x )  =  ( y 
.(+)  ( z  .(+)  x ) ) ) ) ) )
5648, 55bitrd 261 . 2  |-  ( ( G  e.  Grp  /\  Y  e.  _V )  ->  (  .(+)  e.  ( G  GrpAct  Y )  <->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. x  e.  Y  (
(  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
572, 56biadan2 652 1  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. x  e.  Y  ( (  .0.  .(+)  x )  =  x  /\  A. y  e.  X  A. z  e.  X  (
( y  .+  z
)  .(+)  x )  =  ( y  .(+)  ( z 
.(+)  x ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 375    = wceq 1454    e. wcel 1897   A.wral 2748   {crab 2752   _Vcvv 3056   [_csb 3374    X. cxp 4850   -->wf 5596   ` cfv 5600  (class class class)co 6314    ^m cmap 7497   Basecbs 15169   +g cplusg 15238   0gc0g 15386   Grpcgrp 16717    GrpAct cga 16991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-ral 2753  df-rex 2754  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-op 3986  df-uni 4212  df-br 4416  df-opab 4475  df-id 4767  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-fv 5608  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-map 7499  df-ga 16992
This theorem is referenced by:  gagrp  16994  gaset  16995  gagrpid  16996  gaf  16997  gaass  16999  ga0  17000  gaid  17001  subgga  17002  gass  17003  gasubg  17004  lactghmga  17093  sylow1lem2  17299  sylow2blem2  17321  sylow3lem1  17327
  Copyright terms: Public domain W3C validator