MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfuncd Structured version   Unicode version

Theorem isfuncd 15092
Description: Deduce that an operation is a functor of categories. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
isfunc.b  |-  B  =  ( Base `  D
)
isfunc.c  |-  C  =  ( Base `  E
)
isfunc.h  |-  H  =  ( Hom  `  D
)
isfunc.j  |-  J  =  ( Hom  `  E
)
isfunc.1  |-  .1.  =  ( Id `  D )
isfunc.i  |-  I  =  ( Id `  E
)
isfunc.x  |-  .x.  =  (comp `  D )
isfunc.o  |-  O  =  (comp `  E )
isfunc.d  |-  ( ph  ->  D  e.  Cat )
isfunc.e  |-  ( ph  ->  E  e.  Cat )
isfuncd.1  |-  ( ph  ->  F : B --> C )
isfuncd.2  |-  ( ph  ->  G  Fn  ( B  X.  B ) )
isfuncd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x G y ) : ( x H y ) --> ( ( F `  x
) J ( F `
 y ) ) )
isfuncd.4  |-  ( (
ph  /\  x  e.  B )  ->  (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
) )
isfuncd.5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  /\  (
m  e.  ( x H y )  /\  n  e.  ( y H z ) ) )  ->  ( (
x G z ) `
 ( n (
<. x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) )
Assertion
Ref Expression
isfuncd  |-  ( ph  ->  F ( D  Func  E ) G )
Distinct variable groups:    m, n, x, y, z, B    D, m, n, x, y, z   
m, E, n, x, y, z    m, H, n, x, y, z   
m, F, n, x, y, z    m, G, n, x, y, z   
x, J, y, z    ph, m, n, x, y, z
Allowed substitution hints:    C( x, y, z, m, n)    .x. ( x, y, z, m, n)    .1. ( x, y, z, m, n)    I( x, y, z, m, n)    J( m, n)    O( x, y, z, m, n)

Proof of Theorem isfuncd
StepHypRef Expression
1 isfuncd.1 . 2  |-  ( ph  ->  F : B --> C )
2 isfuncd.2 . . . 4  |-  ( ph  ->  G  Fn  ( B  X.  B ) )
3 isfunc.b . . . . . 6  |-  B  =  ( Base `  D
)
4 fvex 5876 . . . . . 6  |-  ( Base `  D )  e.  _V
53, 4eqeltri 2551 . . . . 5  |-  B  e. 
_V
65, 5xpex 6588 . . . 4  |-  ( B  X.  B )  e. 
_V
7 fnex 6127 . . . 4  |-  ( ( G  Fn  ( B  X.  B )  /\  ( B  X.  B
)  e.  _V )  ->  G  e.  _V )
82, 6, 7sylancl 662 . . 3  |-  ( ph  ->  G  e.  _V )
9 isfuncd.3 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x G y ) : ( x H y ) --> ( ( F `  x
) J ( F `
 y ) ) )
10 ovex 6309 . . . . . . 7  |-  ( ( F `  x ) J ( F `  y ) )  e. 
_V
11 ovex 6309 . . . . . . 7  |-  ( x H y )  e. 
_V
1210, 11elmap 7447 . . . . . 6  |-  ( ( x G y )  e.  ( ( ( F `  x ) J ( F `  y ) )  ^m  ( x H y ) )  <->  ( x G y ) : ( x H y ) --> ( ( F `
 x ) J ( F `  y
) ) )
139, 12sylibr 212 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x G y )  e.  ( ( ( F `  x
) J ( F `
 y ) )  ^m  ( x H y ) ) )
1413ralrimivva 2885 . . . 4  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x G y )  e.  ( ( ( F `  x
) J ( F `
 y ) )  ^m  ( x H y ) ) )
15 fveq2 5866 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( G `  <. x ,  y >. )
)
16 df-ov 6287 . . . . . . 7  |-  ( x G y )  =  ( G `  <. x ,  y >. )
1715, 16syl6eqr 2526 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( G `  z )  =  ( x G y ) )
18 vex 3116 . . . . . . . . . 10  |-  x  e. 
_V
19 vex 3116 . . . . . . . . . 10  |-  y  e. 
_V
2018, 19op1std 6794 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( 1st `  z
)  =  x )
2120fveq2d 5870 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( F `  ( 1st `  z ) )  =  ( F `
 x ) )
2218, 19op2ndd 6795 . . . . . . . . 9  |-  ( z  =  <. x ,  y
>.  ->  ( 2nd `  z
)  =  y )
2322fveq2d 5870 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( F `  ( 2nd `  z ) )  =  ( F `
 y ) )
2421, 23oveq12d 6302 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  =  ( ( F `
 x ) J ( F `  y
) ) )
25 fveq2 5866 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( H `  <. x ,  y >. )
)
26 df-ov 6287 . . . . . . . 8  |-  ( x H y )  =  ( H `  <. x ,  y >. )
2725, 26syl6eqr 2526 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( H `  z )  =  ( x H y ) )
2824, 27oveq12d 6302 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) )  =  ( ( ( F `  x ) J ( F `  y ) )  ^m  ( x H y ) ) )
2917, 28eleq12d 2549 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( ( G `
 z )  e.  ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  <->  ( x G y )  e.  ( ( ( F `
 x ) J ( F `  y
) )  ^m  (
x H y ) ) ) )
3029ralxp 5144 . . . 4  |-  ( A. z  e.  ( B  X.  B ) ( G `
 z )  e.  ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  <->  A. x  e.  B  A. y  e.  B  ( x G y )  e.  ( ( ( F `
 x ) J ( F `  y
) )  ^m  (
x H y ) ) )
3114, 30sylibr 212 . . 3  |-  ( ph  ->  A. z  e.  ( B  X.  B ) ( G `  z
)  e.  ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z )
) )
32 elixp2 7473 . . 3  |-  ( G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  <->  ( G  e.  _V  /\  G  Fn  ( B  X.  B
)  /\  A. z  e.  ( B  X.  B
) ( G `  z )  e.  ( ( ( F `  ( 1st `  z ) ) J ( F `
 ( 2nd `  z
) ) )  ^m  ( H `  z ) ) ) )
338, 2, 31, 32syl3anbrc 1180 . 2  |-  ( ph  ->  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `
 z ) ) )
34 isfuncd.4 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x )
) )
35 isfuncd.5 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  /\  (
m  e.  ( x H y )  /\  n  e.  ( y H z ) ) )  ->  ( (
x G z ) `
 ( n (
<. x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) )
36353expia 1198 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( m  e.  ( x H y )  /\  n  e.  ( y H z ) )  ->  (
( x G z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n
) ( <. ( F `  x ) ,  ( F `  y ) >. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
37363exp2 1214 . . . . . . 7  |-  ( ph  ->  ( x  e.  B  ->  ( y  e.  B  ->  ( z  e.  B  ->  ( ( m  e.  ( x H y )  /\  n  e.  ( y H z ) )  ->  (
( x G z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n
) ( <. ( F `  x ) ,  ( F `  y ) >. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) ) )
3837imp43 595 . . . . . 6  |-  ( ( ( ph  /\  x  e.  B )  /\  (
y  e.  B  /\  z  e.  B )
)  ->  ( (
m  e.  ( x H y )  /\  n  e.  ( y H z ) )  ->  ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
3938ralrimivv 2884 . . . . 5  |-  ( ( ( ph  /\  x  e.  B )  /\  (
y  e.  B  /\  z  e.  B )
)  ->  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) )
4039ralrimivva 2885 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) )
4134, 40jca 532 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
4241ralrimiva 2878 . 2  |-  ( ph  ->  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x )
)  =  ( I `
 ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <. x ,  y
>.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n
) ( <. ( F `  x ) ,  ( F `  y ) >. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) )
43 isfunc.c . . 3  |-  C  =  ( Base `  E
)
44 isfunc.h . . 3  |-  H  =  ( Hom  `  D
)
45 isfunc.j . . 3  |-  J  =  ( Hom  `  E
)
46 isfunc.1 . . 3  |-  .1.  =  ( Id `  D )
47 isfunc.i . . 3  |-  I  =  ( Id `  E
)
48 isfunc.x . . 3  |-  .x.  =  (comp `  D )
49 isfunc.o . . 3  |-  O  =  (comp `  E )
50 isfunc.d . . 3  |-  ( ph  ->  D  e.  Cat )
51 isfunc.e . . 3  |-  ( ph  ->  E  e.  Cat )
523, 43, 44, 45, 46, 47, 48, 49, 50, 51isfunc 15091 . 2  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> C  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `
 ( 1st `  z
) ) J ( F `  ( 2nd `  z ) ) )  ^m  ( H `  z ) )  /\  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x H y ) A. n  e.  ( y H z ) ( ( x G z ) `  ( n ( <.
x ,  y >.  .x.  z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. O ( F `  z ) ) ( ( x G y ) `  m ) ) ) ) ) )
531, 33, 42, 52mpbir3and 1179 1  |-  ( ph  ->  F ( D  Func  E ) G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   <.cop 4033   class class class wbr 4447    X. cxp 4997    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   1stc1st 6782   2ndc2nd 6783    ^m cmap 7420   X_cixp 7469   Basecbs 14490   Hom chom 14566  compcco 14567   Catccat 14919   Idccid 14920    Func cfunc 15081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-map 7422  df-ixp 7470  df-func 15085
This theorem is referenced by:  funcoppc  15102  funcres  15123  catcisolem  15291  1stfcl  15324  2ndfcl  15325  prfcl  15330  evlfcl  15349  curf1cl  15355  curfcl  15359  hofcl  15386
  Copyright terms: Public domain W3C validator