MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Structured version   Unicode version

Theorem isfull 14823
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
Assertion
Ref Expression
isfull  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, J, y   
x, F, y    x, G, y

Proof of Theorem isfull
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 14819 . . 3  |-  ( C Full 
D )  C_  ( C  Func  D )
21ssbri 4337 . 2  |-  ( F ( C Full  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4296 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 14776 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 195 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6103 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4306 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 457 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5698 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfull.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2493 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
12 simpr 461 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D )  ->  d  =  D )
1312fveq2d 5698 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Hom  `  d
)  =  ( Hom  `  D ) )
14 isfull.j . . . . . . . . . . . . . 14  |-  J  =  ( Hom  `  D
)
1513, 14syl6eqr 2493 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Hom  `  d
)  =  J )
1615oveqd 6111 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  =  ( ( f `
 x ) J ( f `  y
) ) )
1716eqeq2d 2454 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1811, 17raleqbidv 2934 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1911, 18raleqbidv 2934 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
207, 19anbi12d 710 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) ) )
2120opabbidv 4358 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
22 df-full 14817 . . . . . . 7  |- Full  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) ) } )
23 ovex 6119 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
24 simpl 457 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  ->  f ( C 
Func  D ) g )
2524ssopab2i 4619 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  { <. f ,  g >.  |  f ( C  Func  D
) g }
26 opabss 4356 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2725, 26sstri 3368 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  ( C  Func  D )
2823, 27ssexi 4440 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  e.  _V
2921, 22, 28ovmpt2a 6224 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
305, 29syl 16 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
3130breqd 4306 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G
) )
32 relfunc 14775 . . . . . 6  |-  Rel  ( C  Func  D )
33 brrelex12 4879 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
3432, 33mpan 670 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
35 breq12 4300 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
36 simpr 461 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3736oveqd 6111 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3837rneqd 5070 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ran  ( x g y )  =  ran  ( x G y ) )
39 simpl 457 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
4039fveq1d 5696 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  x
)  =  ( F `
 x ) )
4139fveq1d 5696 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  y
)  =  ( F `
 y ) )
4240, 41oveq12d 6112 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) J ( f `  y ) )  =  ( ( F `  x ) J ( F `  y ) ) )
4338, 42eqeq12d 2457 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  ran  ( x G y )  =  ( ( F `  x
) J ( F `
 y ) ) ) )
44432ralbidv 2760 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
4535, 44anbi12d 710 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
46 eqid 2443 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }
4745, 46brabga 4606 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4834, 47syl 16 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4931, 48bitrd 253 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
5049bianabs 875 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
512, 50biadan2 642 1  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   _Vcvv 2975   <.cop 3886   class class class wbr 4295   {copab 4352   ran crn 4844   Rel wrel 4848   ` cfv 5421  (class class class)co 6094   Basecbs 14177   Hom chom 14252   Catccat 14605    Func cfunc 14767   Full cful 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-1st 6580  df-2nd 6581  df-func 14771  df-full 14817
This theorem is referenced by:  isfull2  14824  fullpropd  14833  fulloppc  14835  fullres2c  14852
  Copyright terms: Public domain W3C validator