MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfull Structured version   Unicode version

Theorem isfull 14803
Description: Value of the set of full functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfull.b  |-  B  =  ( Base `  C
)
isfull.j  |-  J  =  ( Hom  `  D
)
Assertion
Ref Expression
isfull  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, J, y   
x, F, y    x, G, y

Proof of Theorem isfull
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fullfunc 14799 . . 3  |-  ( C Full 
D )  C_  ( C  Func  D )
21ssbri 4322 . 2  |-  ( F ( C Full  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4281 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 14756 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 195 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6089 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4291 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 454 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5683 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfull.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2483 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
12 simpr 458 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  d  =  D )  ->  d  =  D )
1312fveq2d 5683 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Hom  `  d
)  =  ( Hom  `  D ) )
14 isfull.j . . . . . . . . . . . . . 14  |-  J  =  ( Hom  `  D
)
1513, 14syl6eqr 2483 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Hom  `  d
)  =  J )
1615oveqd 6097 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  =  ( ( f `
 x ) J ( f `  y
) ) )
1716eqeq2d 2444 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1811, 17raleqbidv 2921 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
1911, 18raleqbidv 2921 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) )
207, 19anbi12d 703 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) ) )
2120opabbidv 4343 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
22 df-full 14797 . . . . . . 7  |- Full  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  d ) ( f `
 y ) ) ) } )
23 ovex 6105 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
24 simpl 454 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  ->  f ( C 
Func  D ) g )
2524ssopab2i 4605 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  { <. f ,  g >.  |  f ( C  Func  D
) g }
26 opabss 4341 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2725, 26sstri 3353 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  C_  ( C  Func  D )
2823, 27ssexi 4425 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  e.  _V
2921, 22, 28ovmpt2a 6210 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
305, 29syl 16 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Full  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } )
3130breqd 4291 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G
) )
32 relfunc 14755 . . . . . 6  |-  Rel  ( C  Func  D )
33 brrelex12 4863 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
3432, 33mpan 663 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
35 breq12 4285 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
36 simpr 458 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3736oveqd 6097 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3837rneqd 5054 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ran  ( x g y )  =  ran  ( x G y ) )
39 simpl 454 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  f  =  F )
4039fveq1d 5681 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  x
)  =  ( F `
 x ) )
4139fveq1d 5681 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f `  y
)  =  ( F `
 y ) )
4240, 41oveq12d 6098 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f `  x ) J ( f `  y ) )  =  ( ( F `  x ) J ( F `  y ) ) )
4338, 42eqeq12d 2447 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  ran  ( x G y )  =  ( ( F `  x
) J ( F `
 y ) ) ) )
44432ralbidv 2747 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
4535, 44anbi12d 703 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) )  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
46 eqid 2433 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) }
4745, 46brabga 4592 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4834, 47syl 16 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  ran  ( x g y )  =  ( ( f `  x ) J ( f `  y ) ) ) } G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
4931, 48bitrd 253 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) ) )
5049bianabs 868 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Full  D
) G  <->  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
512, 50biadan2 635 1  |-  ( F ( C Full  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  ran  ( x G y )  =  ( ( F `  x ) J ( F `  y ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   _Vcvv 2962   <.cop 3871   class class class wbr 4280   {copab 4337   ran crn 4828   Rel wrel 4832   ` cfv 5406  (class class class)co 6080   Basecbs 14157   Hom chom 14232   Catccat 14585    Func cfunc 14747   Full cful 14795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-func 14751  df-full 14797
This theorem is referenced by:  isfull2  14804  fullpropd  14813  fulloppc  14815  fullres2c  14832
  Copyright terms: Public domain W3C validator