MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth Structured version   Unicode version

Theorem isfth 15812
Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
isfth  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, F, y   
x, G, y

Proof of Theorem isfth
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthfunc 15805 . . 3  |-  ( C Faith 
D )  C_  ( C  Func  D )
21ssbri 4464 . 2  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4422 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 15761 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 199 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6312 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4432 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 459 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5883 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfth.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2482 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
1211raleqdv 3032 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. y  e.  B  Fun  `' ( x g y ) ) )
1311, 12raleqbidv 3040 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) )
147, 13anbi12d 716 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) ) )
1514opabbidv 4485 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
16 df-fth 15803 . . . . . . 7  |- Faith  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) } )
17 ovex 6331 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
18 simpl 459 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  ->  f
( C  Func  D
) g )
1918ssopab2i 4746 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  {
<. f ,  g >.  |  f ( C 
Func  D ) g }
20 opabss 4483 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2119, 20sstri 3474 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  ( C  Func  D )
2217, 21ssexi 4567 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  e.  _V
2315, 16, 22ovmpt2a 6439 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
245, 23syl 17 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
2524breqd 4432 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G ) )
26 relfunc 15760 . . . . . 6  |-  Rel  ( C  Func  D )
27 brrelex12 4889 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
2826, 27mpan 675 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
29 breq12 4426 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
30 simpr 463 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3130oveqd 6320 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3231cnveqd 5027 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  `' ( x g y )  =  `' ( x G y ) )
3332funeqd 5620 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( Fun  `' ( x g y )  <->  Fun  `' ( x G y ) ) )
34332ralbidv 2870 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  Fun  `' ( x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
3529, 34anbi12d 716 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
36 eqid 2423 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  =  { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }
3735, 36brabga 4732 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3828, 37syl 17 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3925, 38bitrd 257 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
4039bianabs 889 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
412, 40biadan2 647 1  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869   A.wral 2776   _Vcvv 3082   <.cop 4003   class class class wbr 4421   {copab 4479   `'ccnv 4850   Rel wrel 4856   Fun wfun 5593   ` cfv 5599  (class class class)co 6303   Basecbs 15114   Catccat 15563    Func cfunc 15752   Faith cfth 15801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fv 5607  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-1st 6805  df-2nd 6806  df-func 15756  df-fth 15803
This theorem is referenced by:  isfth2  15813  fthpropd  15819  fthoppc  15821  fthres2b  15828  fthres2c  15829  fthres2  15830
  Copyright terms: Public domain W3C validator