MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfth Structured version   Unicode version

Theorem isfth 14823
Description: Value of the set of faithful functors between two categories. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypothesis
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
isfth  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Distinct variable groups:    x, y, B    x, C, y    x, D, y    x, F, y   
x, G, y

Proof of Theorem isfth
Dummy variables  c 
d  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fthfunc 14816 . . 3  |-  ( C Faith 
D )  C_  ( C  Func  D )
21ssbri 4333 . 2  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
3 df-br 4292 . . . . . . 7  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
4 funcrcl 14772 . . . . . . 7  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4sylbi 195 . . . . . 6  |-  ( F ( C  Func  D
) G  ->  ( C  e.  Cat  /\  D  e.  Cat ) )
6 oveq12 6099 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( c  Func  d
)  =  ( C 
Func  D ) )
76breqd 4302 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( f ( c 
Func  d ) g  <-> 
f ( C  Func  D ) g ) )
8 simpl 457 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  d  =  D )  ->  c  =  C )
98fveq2d 5694 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  ( Base `  C ) )
10 isfth.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
119, 10syl6eqr 2492 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( Base `  c
)  =  B )
1211raleqdv 2922 . . . . . . . . . 10  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. y  e.  B  Fun  `' ( x g y ) ) )
1311, 12raleqbidv 2930 . . . . . . . . 9  |-  ( ( c  =  C  /\  d  =  D )  ->  ( A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) )
147, 13anbi12d 710 . . . . . . . 8  |-  ( ( c  =  C  /\  d  =  D )  ->  ( ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) )  <->  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) ) )
1514opabbidv 4354 . . . . . . 7  |-  ( ( c  =  C  /\  d  =  D )  ->  { <. f ,  g
>.  |  ( f
( c  Func  d
) g  /\  A. x  e.  ( Base `  c ) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) }  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
16 df-fth 14814 . . . . . . 7  |- Faith  =  ( c  e.  Cat , 
d  e.  Cat  |->  {
<. f ,  g >.  |  ( f ( c  Func  d )
g  /\  A. x  e.  ( Base `  c
) A. y  e.  ( Base `  c
) Fun  `' (
x g y ) ) } )
17 ovex 6115 . . . . . . . 8  |-  ( C 
Func  D )  e.  _V
18 simpl 457 . . . . . . . . . 10  |-  ( ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  ->  f
( C  Func  D
) g )
1918ssopab2i 4615 . . . . . . . . 9  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  {
<. f ,  g >.  |  f ( C 
Func  D ) g }
20 opabss 4352 . . . . . . . . 9  |-  { <. f ,  g >.  |  f ( C  Func  D
) g }  C_  ( C  Func  D )
2119, 20sstri 3364 . . . . . . . 8  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  C_  ( C  Func  D )
2217, 21ssexi 4436 . . . . . . 7  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  e.  _V
2315, 16, 22ovmpt2a 6220 . . . . . 6  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
245, 23syl 16 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( C Faith  D )  =  { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } )
2524breqd 4302 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  F { <. f ,  g >.  |  ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G ) )
26 relfunc 14771 . . . . . 6  |-  Rel  ( C  Func  D )
27 brrelex12 4875 . . . . . 6  |-  ( ( Rel  ( C  Func  D )  /\  F ( C  Func  D ) G )  ->  ( F  e.  _V  /\  G  e.  _V ) )
2826, 27mpan 670 . . . . 5  |-  ( F ( C  Func  D
) G  ->  ( F  e.  _V  /\  G  e.  _V ) )
29 breq12 4296 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( f ( C 
Func  D ) g  <->  F ( C  Func  D ) G ) )
30 simpr 461 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  g  =  G )  ->  g  =  G )
3130oveqd 6107 . . . . . . . . . 10  |-  ( ( f  =  F  /\  g  =  G )  ->  ( x g y )  =  ( x G y ) )
3231cnveqd 5014 . . . . . . . . 9  |-  ( ( f  =  F  /\  g  =  G )  ->  `' ( x g y )  =  `' ( x G y ) )
3332funeqd 5438 . . . . . . . 8  |-  ( ( f  =  F  /\  g  =  G )  ->  ( Fun  `' ( x g y )  <->  Fun  `' ( x G y ) ) )
34332ralbidv 2756 . . . . . . 7  |-  ( ( f  =  F  /\  g  =  G )  ->  ( A. x  e.  B  A. y  e.  B  Fun  `' ( x g y )  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
3529, 34anbi12d 710 . . . . . 6  |-  ( ( f  =  F  /\  g  =  G )  ->  ( ( f ( C  Func  D )
g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) )  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
36 eqid 2442 . . . . . 6  |-  { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }  =  { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) }
3735, 36brabga 4602 . . . . 5  |-  ( ( F  e.  _V  /\  G  e.  _V )  ->  ( F { <. f ,  g >.  |  ( f ( C  Func  D ) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3828, 37syl 16 . . . 4  |-  ( F ( C  Func  D
) G  ->  ( F { <. f ,  g
>.  |  ( f
( C  Func  D
) g  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x g y ) ) } G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
3925, 38bitrd 253 . . 3  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  ( F
( C  Func  D
) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) ) )
4039bianabs 875 . 2  |-  ( F ( C  Func  D
) G  ->  ( F ( C Faith  D
) G  <->  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
412, 40biadan2 642 1  |-  ( F ( C Faith  D ) G  <->  ( F ( C  Func  D ) G  /\  A. x  e.  B  A. y  e.  B  Fun  `' ( x G y ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971   <.cop 3882   class class class wbr 4291   {copab 4348   `'ccnv 4838   Rel wrel 4844   Fun wfun 5411   ` cfv 5417  (class class class)co 6090   Basecbs 14173   Catccat 14601    Func cfunc 14763   Faith cfth 14812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-iun 4172  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-func 14767  df-fth 14814
This theorem is referenced by:  isfth2  14824  fthpropd  14830  fthoppc  14832  fthres2b  14839  fthres2c  14840  fthres2  14841
  Copyright terms: Public domain W3C validator