Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4 Structured version   Unicode version

Theorem isfne4 30398
Description: The predicate " B is finer than  A " in terms of the topology generation function. (Contributed by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1  |-  X  = 
U. A
isfne.2  |-  Y  = 
U. B
Assertion
Ref Expression
isfne4  |-  ( A Fne B  <->  ( X  =  Y  /\  A  C_  ( topGen `  B )
) )

Proof of Theorem isfne4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fnerel 30396 . . 3  |-  Rel  Fne
21brrelex2i 5030 . 2  |-  ( A Fne B  ->  B  e.  _V )
3 simpl 455 . . . . 5  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  X  =  Y )
4 isfne.1 . . . . 5  |-  X  = 
U. A
5 isfne.2 . . . . 5  |-  Y  = 
U. B
63, 4, 53eqtr3g 2518 . . . 4  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  U. A  =  U. B )
7 fvex 5858 . . . . . . 7  |-  ( topGen `  B )  e.  _V
87ssex 4581 . . . . . 6  |-  ( A 
C_  ( topGen `  B
)  ->  A  e.  _V )
98adantl 464 . . . . 5  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  A  e.  _V )
10 uniexb 6583 . . . . 5  |-  ( A  e.  _V  <->  U. A  e. 
_V )
119, 10sylib 196 . . . 4  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  U. A  e.  _V )
126, 11eqeltrrd 2543 . . 3  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  U. B  e.  _V )
13 uniexb 6583 . . 3  |-  ( B  e.  _V  <->  U. B  e. 
_V )
1412, 13sylibr 212 . 2  |-  ( ( X  =  Y  /\  A  C_  ( topGen `  B
) )  ->  B  e.  _V )
154, 5isfne 30397 . . 3  |-  ( B  e.  _V  ->  ( A Fne B  <->  ( X  =  Y  /\  A. x  e.  A  x  C_  U. ( B  i^i  ~P x ) ) ) )
16 dfss3 3479 . . . . 5  |-  ( A 
C_  ( topGen `  B
)  <->  A. x  e.  A  x  e.  ( topGen `  B ) )
17 eltg 19625 . . . . . 6  |-  ( B  e.  _V  ->  (
x  e.  ( topGen `  B )  <->  x  C_  U. ( B  i^i  ~P x ) ) )
1817ralbidv 2893 . . . . 5  |-  ( B  e.  _V  ->  ( A. x  e.  A  x  e.  ( topGen `  B )  <->  A. x  e.  A  x  C_  U. ( B  i^i  ~P x ) ) )
1916, 18syl5bb 257 . . . 4  |-  ( B  e.  _V  ->  ( A  C_  ( topGen `  B
)  <->  A. x  e.  A  x  C_  U. ( B  i^i  ~P x ) ) )
2019anbi2d 701 . . 3  |-  ( B  e.  _V  ->  (
( X  =  Y  /\  A  C_  ( topGen `
 B ) )  <-> 
( X  =  Y  /\  A. x  e.  A  x  C_  U. ( B  i^i  ~P x ) ) ) )
2115, 20bitr4d 256 . 2  |-  ( B  e.  _V  ->  ( A Fne B  <->  ( X  =  Y  /\  A  C_  ( topGen `  B )
) ) )
222, 14, 21pm5.21nii 351 1  |-  ( A Fne B  <->  ( X  =  Y  /\  A  C_  ( topGen `  B )
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106    i^i cin 3460    C_ wss 3461   ~Pcpw 3999   U.cuni 4235   class class class wbr 4439   ` cfv 5570   topGenctg 14927   Fnecfne 30394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-topgen 14933  df-fne 30395
This theorem is referenced by:  isfne4b  30399  isfne2  30400  isfne3  30401  fnebas  30402  fnetg  30403  topfne  30412  fnemeet1  30424  fnemeet2  30425  fnejoin1  30426  fnejoin2  30427
  Copyright terms: Public domain W3C validator