MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isflf Structured version   Unicode version

Theorem isflf 20224
Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
isflf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Distinct variable groups:    A, o    o, s, F    o, J, s    o, L, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isflf
StepHypRef Expression
1 flfval 20221 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
21eleq2d 2532 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 991 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 19191 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
543ad2ant1 1012 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  X  e.  J )
6 filfbas 20079 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
763ad2ant2 1013 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  L  e.  ( fBas `  Y
) )
8 simp3 993 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  F : Y --> X )
9 fmfil 20175 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
105, 7, 8, 9syl3anc 1223 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
11 flimopn 20206 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
123, 10, 11syl2anc 661 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
13 elfm 20178 . . . . . . . 8  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( o  e.  ( ( X  FilMap  F ) `
 L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
145, 7, 8, 13syl3anc 1223 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1514adantr 465 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
16 toponss 19192 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  ->  o  C_  X )
173, 16sylan 471 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  o  C_  X )
1817biantrurd 508 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( E. s  e.  L  ( F " s ) 
C_  o  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1915, 18bitr4d 256 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  E. s  e.  L  ( F " s )  C_  o
) )
2019imbi2d 316 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `
 L ) )  <-> 
( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) )
2120ralbidva 2895 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) )  <->  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
2221anbi2d 703 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) ) )
232, 12, 223bitrd 279 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    e. wcel 1762   A.wral 2809   E.wrex 2810    C_ wss 3471   "cima 4997   -->wf 5577   ` cfv 5581  (class class class)co 6277   fBascfbas 18172  TopOnctopon 19157   Filcfil 20076    FilMap cfm 20164    fLim cflim 20165    fLimf cflf 20166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-map 7414  df-fbas 18182  df-fg 18183  df-top 19161  df-topon 19164  df-ntr 19282  df-nei 19360  df-fil 20077  df-fm 20169  df-flim 20170  df-flf 20171
This theorem is referenced by:  flfelbas  20225  flffbas  20226  flftg  20227  cnpflfi  20230  cnpflf2  20231  txflf  20237  limcflf  22015  rrhre  27623
  Copyright terms: Public domain W3C validator