MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isflf Structured version   Unicode version

Theorem isflf 20994
Description: The property of being a limit point of a function. (Contributed by Jeff Hankins, 8-Nov-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
isflf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Distinct variable groups:    A, o    o, s, F    o, J, s    o, L, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isflf
StepHypRef Expression
1 flfval 20991 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fLimf  L ) `
 F )  =  ( J  fLim  (
( X  FilMap  F ) `
 L ) ) )
21eleq2d 2492 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 1005 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 19929 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
543ad2ant1 1026 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  X  e.  J )
6 filfbas 20849 . . . . 5  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
763ad2ant2 1027 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  L  e.  ( fBas `  Y
) )
8 simp3 1007 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  F : Y --> X )
9 fmfil 20945 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
105, 7, 8, 9syl3anc 1264 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
11 flimopn 20976 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
123, 10, 11syl2anc 665 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fLim  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) ) ) )
13 elfm 20948 . . . . . . . 8  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( o  e.  ( ( X  FilMap  F ) `
 L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
145, 7, 8, 13syl3anc 1264 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1514adantr 466 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
16 toponss 19930 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  o  e.  J )  ->  o  C_  X )
173, 16sylan 473 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  o  C_  X )
1817biantrurd 510 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( E. s  e.  L  ( F " s ) 
C_  o  <->  ( o  C_  X  /\  E. s  e.  L  ( F " s )  C_  o
) ) )
1915, 18bitr4d 259 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
o  e.  ( ( X  FilMap  F ) `  L )  <->  E. s  e.  L  ( F " s )  C_  o
) )
2019imbi2d 317 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `
 L ) )  <-> 
( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) )
2120ralbidva 2861 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) )  <->  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) )
2221anbi2d 708 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  o  e.  ( ( X  FilMap  F ) `  L ) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s ) 
C_  o ) ) ) )
232, 12, 223bitrd 282 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  E. s  e.  L  ( F " s )  C_  o
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1868   A.wral 2775   E.wrex 2776    C_ wss 3436   "cima 4852   -->wf 5593   ` cfv 5597  (class class class)co 6301   fBascfbas 18945  TopOnctopon 19904   Filcfil 20846    FilMap cfm 20934    fLim cflim 20935    fLimf cflf 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-map 7478  df-fbas 18954  df-fg 18955  df-top 19907  df-topon 19909  df-ntr 20021  df-nei 20100  df-fil 20847  df-fm 20939  df-flim 20940  df-flf 20941
This theorem is referenced by:  flfelbas  20995  flffbas  20996  flftg  20997  cnpflfi  21000  cnpflf2  21001  txflf  21007  limcflf  22822  rrhre  28820
  Copyright terms: Public domain W3C validator