Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl Unicode version

Theorem isfldidl 26568
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isfldidl.1  |-  G  =  ( 1st `  K
)
isfldidl.2  |-  H  =  ( 2nd `  K
)
isfldidl.3  |-  X  =  ran  G
isfldidl.4  |-  Z  =  (GId `  G )
isfldidl.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isfldidl  |-  ( K  e.  Fld  <->  ( K  e. CRingOps 
/\  U  =/=  Z  /\  ( Idl `  K
)  =  { { Z } ,  X }
) )

Proof of Theorem isfldidl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fldcrng 26504 . . 3  |-  ( K  e.  Fld  ->  K  e. CRingOps )
2 flddivrng 21956 . . . 4  |-  ( K  e.  Fld  ->  K  e. 
DivRingOps )
3 isfldidl.1 . . . . 5  |-  G  =  ( 1st `  K
)
4 isfldidl.2 . . . . 5  |-  H  =  ( 2nd `  K
)
5 isfldidl.3 . . . . 5  |-  X  =  ran  G
6 isfldidl.4 . . . . 5  |-  Z  =  (GId `  G )
7 isfldidl.5 . . . . 5  |-  U  =  (GId `  H )
83, 4, 5, 6, 7dvrunz 21974 . . . 4  |-  ( K  e.  DivRingOps  ->  U  =/=  Z
)
92, 8syl 16 . . 3  |-  ( K  e.  Fld  ->  U  =/=  Z )
103, 4, 5, 6divrngidl 26528 . . . 4  |-  ( K  e.  DivRingOps  ->  ( Idl `  K
)  =  { { Z } ,  X }
)
112, 10syl 16 . . 3  |-  ( K  e.  Fld  ->  ( Idl `  K )  =  { { Z } ,  X } )
121, 9, 113jca 1134 . 2  |-  ( K  e.  Fld  ->  ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } ) )
13 crngorngo 26500 . . . . . 6  |-  ( K  e. CRingOps  ->  K  e.  RingOps )
14133ad2ant1 978 . . . . 5  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  K  e.  RingOps )
15 simp2 958 . . . . 5  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  U  =/=  Z )
163rneqi 5055 . . . . . . . . . . . . . . 15  |-  ran  G  =  ran  ( 1st `  K
)
175, 16eqtri 2424 . . . . . . . . . . . . . 14  |-  X  =  ran  ( 1st `  K
)
1817, 4, 7rngo1cl 21970 . . . . . . . . . . . . 13  |-  ( K  e.  RingOps  ->  U  e.  X
)
1913, 18syl 16 . . . . . . . . . . . 12  |-  ( K  e. CRingOps  ->  U  e.  X
)
2019ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  U  e.  X )
21 eldif 3290 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( X  \  { Z } )  <->  ( x  e.  X  /\  -.  x  e.  { Z } ) )
22 snssi 3902 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  X  ->  { x }  C_  X )
233, 5igenss 26562 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  RingOps  /\  {
x }  C_  X
)  ->  { x }  C_  ( K  IdlGen  { x } ) )
2422, 23sylan2 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  RingOps  /\  x  e.  X )  ->  { x }  C_  ( K  IdlGen  { x } ) )
25 vex 2919 . . . . . . . . . . . . . . . . . . . . . 22  |-  x  e. 
_V
2625snss 3886 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( K  IdlGen  { x } )  <->  { x }  C_  ( K  IdlGen  { x } ) )
2726biimpri 198 . . . . . . . . . . . . . . . . . . . 20  |-  ( { x }  C_  ( K  IdlGen  { x }
)  ->  x  e.  ( K  IdlGen  { x } ) )
28 eleq2 2465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  IdlGen  { x }
)  =  { Z }  ->  ( x  e.  ( K  IdlGen  { x } )  <->  x  e.  { Z } ) )
2927, 28syl5ibcom 212 . . . . . . . . . . . . . . . . . . 19  |-  ( { x }  C_  ( K  IdlGen  { x }
)  ->  ( ( K  IdlGen  { x }
)  =  { Z }  ->  x  e.  { Z } ) )
3029con3and 429 . . . . . . . . . . . . . . . . . 18  |-  ( ( { x }  C_  ( K  IdlGen  { x } )  /\  -.  x  e.  { Z } )  ->  -.  ( K  IdlGen  { x } )  =  { Z } )
3124, 30sylan 458 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  RingOps  /\  x  e.  X )  /\  -.  x  e.  { Z } )  ->  -.  ( K  IdlGen  { x } )  =  { Z } )
3231anasss 629 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  RingOps  /\  (
x  e.  X  /\  -.  x  e.  { Z } ) )  ->  -.  ( K  IdlGen  { x } )  =  { Z } )
3321, 32sylan2b 462 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  RingOps  /\  x  e.  ( X  \  { Z } ) )  ->  -.  ( K  IdlGen  { x } )  =  { Z } )
3433adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  RingOps  /\  ( Idl `  K )  =  { { Z } ,  X }
)  /\  x  e.  ( X  \  { Z } ) )  ->  -.  ( K  IdlGen  { x } )  =  { Z } )
35 eldifi 3429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( X  \  { Z } )  ->  x  e.  X )
3635snssd 3903 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( X  \  { Z } )  ->  { x }  C_  X )
373, 5igenidl 26563 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  RingOps  /\  {
x }  C_  X
)  ->  ( K  IdlGen  { x } )  e.  ( Idl `  K
) )
3836, 37sylan2 461 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  RingOps  /\  x  e.  ( X  \  { Z } ) )  -> 
( K  IdlGen  { x } )  e.  ( Idl `  K ) )
39 eleq2 2465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Idl `  K )  =  { { Z } ,  X }  ->  ( ( K  IdlGen  { x } )  e.  ( Idl `  K
)  <->  ( K  IdlGen  { x } )  e. 
{ { Z } ,  X } ) )
4038, 39syl5ibcom 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  RingOps  /\  x  e.  ( X  \  { Z } ) )  -> 
( ( Idl `  K
)  =  { { Z } ,  X }  ->  ( K  IdlGen  { x } )  e.  { { Z } ,  X } ) )
4140imp 419 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  RingOps  /\  x  e.  ( X  \  { Z } ) )  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  ( K  IdlGen  { x }
)  e.  { { Z } ,  X }
)
4241an32s 780 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  RingOps  /\  ( Idl `  K )  =  { { Z } ,  X }
)  /\  x  e.  ( X  \  { Z } ) )  -> 
( K  IdlGen  { x } )  e.  { { Z } ,  X } )
43 ovex 6065 . . . . . . . . . . . . . . . . 17  |-  ( K 
IdlGen  { x } )  e.  _V
4443elpr 3792 . . . . . . . . . . . . . . . 16  |-  ( ( K  IdlGen  { x }
)  e.  { { Z } ,  X }  <->  ( ( K  IdlGen  { x } )  =  { Z }  \/  ( K  IdlGen  { x }
)  =  X ) )
4542, 44sylib 189 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  RingOps  /\  ( Idl `  K )  =  { { Z } ,  X }
)  /\  x  e.  ( X  \  { Z } ) )  -> 
( ( K  IdlGen  { x } )  =  { Z }  \/  ( K  IdlGen  { x } )  =  X ) )
4645ord 367 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  RingOps  /\  ( Idl `  K )  =  { { Z } ,  X }
)  /\  x  e.  ( X  \  { Z } ) )  -> 
( -.  ( K 
IdlGen  { x } )  =  { Z }  ->  ( K  IdlGen  { x } )  =  X ) )
4734, 46mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  RingOps  /\  ( Idl `  K )  =  { { Z } ,  X }
)  /\  x  e.  ( X  \  { Z } ) )  -> 
( K  IdlGen  { x } )  =  X )
4813, 47sylanl1 632 . . . . . . . . . . . 12  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  ( K  IdlGen  { x } )  =  X )
493, 4, 5prnc 26567 . . . . . . . . . . . . . 14  |-  ( ( K  e. CRingOps  /\  x  e.  X )  ->  ( K  IdlGen  { x }
)  =  { z  e.  X  |  E. y  e.  X  z  =  ( y H x ) } )
5035, 49sylan2 461 . . . . . . . . . . . . 13  |-  ( ( K  e. CRingOps  /\  x  e.  ( X  \  { Z } ) )  -> 
( K  IdlGen  { x } )  =  {
z  e.  X  |  E. y  e.  X  z  =  ( y H x ) } )
5150adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  ( K  IdlGen  { x } )  =  { z  e.  X  |  E. y  e.  X  z  =  ( y H x ) } )
5248, 51eqtr3d 2438 . . . . . . . . . . 11  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  X  =  { z  e.  X  |  E. y  e.  X  z  =  ( y H x ) } )
5320, 52eleqtrd 2480 . . . . . . . . . 10  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  U  e.  { z  e.  X  |  E. y  e.  X  z  =  ( y H x ) } )
54 eqeq1 2410 . . . . . . . . . . . 12  |-  ( z  =  U  ->  (
z  =  ( y H x )  <->  U  =  ( y H x ) ) )
5554rexbidv 2687 . . . . . . . . . . 11  |-  ( z  =  U  ->  ( E. y  e.  X  z  =  ( y H x )  <->  E. y  e.  X  U  =  ( y H x ) ) )
5655elrab 3052 . . . . . . . . . 10  |-  ( U  e.  { z  e.  X  |  E. y  e.  X  z  =  ( y H x ) }  <->  ( U  e.  X  /\  E. y  e.  X  U  =  ( y H x ) ) )
5753, 56sylib 189 . . . . . . . . 9  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  ( U  e.  X  /\  E. y  e.  X  U  =  ( y H x ) ) )
5857simprd 450 . . . . . . . 8  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  E. y  e.  X  U  =  ( y H x ) )
59 eqcom 2406 . . . . . . . . 9  |-  ( ( y H x )  =  U  <->  U  =  ( y H x ) )
6059rexbii 2691 . . . . . . . 8  |-  ( E. y  e.  X  ( y H x )  =  U  <->  E. y  e.  X  U  =  ( y H x ) )
6158, 60sylibr 204 . . . . . . 7  |-  ( ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  /\  x  e.  ( X  \  { Z } ) )  ->  E. y  e.  X  ( y H x )  =  U )
6261ralrimiva 2749 . . . . . 6  |-  ( ( K  e. CRingOps  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  A. x  e.  ( X  \  { Z }
) E. y  e.  X  ( y H x )  =  U )
63623adant2 976 . . . . 5  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U )
6414, 15, 63jca32 522 . . . 4  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  ( K  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
653, 4, 6, 5, 7isdrngo3 26465 . . . 4  |-  ( K  e.  DivRingOps 
<->  ( K  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
6664, 65sylibr 204 . . 3  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  K  e. 
DivRingOps )
67 simp1 957 . . 3  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  K  e. CRingOps )
68 isfld2 26505 . . 3  |-  ( K  e.  Fld  <->  ( K  e. 
DivRingOps 
/\  K  e. CRingOps )
)
6966, 67, 68sylanbrc 646 . 2  |-  ( ( K  e. CRingOps  /\  U  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  ->  K  e.  Fld )
7012, 69impbii 181 1  |-  ( K  e.  Fld  <->  ( K  e. CRingOps 
/\  U  =/=  Z  /\  ( Idl `  K
)  =  { { Z } ,  X }
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    \ cdif 3277    C_ wss 3280   {csn 3774   {cpr 3775   ran crn 4838   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307  GIdcgi 21728   RingOpscrngo 21916   DivRingOpscdrng 21946   Fldcfld 21954  CRingOpsccring 26495   Idlcidl 26507    IdlGen cigen 26559
This theorem is referenced by:  isfldidl2  26569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-grpo 21732  df-gid 21733  df-ginv 21734  df-ablo 21823  df-ass 21854  df-exid 21856  df-mgm 21860  df-sgr 21872  df-mndo 21879  df-rngo 21917  df-drngo 21947  df-com2 21952  df-fld 21955  df-crngo 26496  df-idl 26510  df-igen 26560
  Copyright terms: Public domain W3C validator