MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3ds Structured version   Unicode version

Theorem isfin3ds 8705
Description: Property of a III-finite set (descending sequence version). (Contributed by Mario Carneiro, 16-May-2015.)
Hypothesis
Ref Expression
isfin3ds.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
Assertion
Ref Expression
isfin3ds  |-  ( A  e.  V  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
Distinct variable group:    a, b, f, g, x, A
Allowed substitution hints:    F( x, f, g, a, b)    V( x, f, g, a, b)

Proof of Theorem isfin3ds
StepHypRef Expression
1 suceq 4943 . . . . . . . . 9  |-  ( b  =  x  ->  suc  b  =  suc  x )
21fveq2d 5868 . . . . . . . 8  |-  ( b  =  x  ->  (
a `  suc  b )  =  ( a `  suc  x ) )
3 fveq2 5864 . . . . . . . 8  |-  ( b  =  x  ->  (
a `  b )  =  ( a `  x ) )
42, 3sseq12d 3533 . . . . . . 7  |-  ( b  =  x  ->  (
( a `  suc  b )  C_  (
a `  b )  <->  ( a `  suc  x
)  C_  ( a `  x ) ) )
54cbvralv 3088 . . . . . 6  |-  ( A. b  e.  om  (
a `  suc  b ) 
C_  ( a `  b )  <->  A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )
)
6 fveq1 5863 . . . . . . . 8  |-  ( a  =  f  ->  (
a `  suc  x )  =  ( f `  suc  x ) )
7 fveq1 5863 . . . . . . . 8  |-  ( a  =  f  ->  (
a `  x )  =  ( f `  x ) )
86, 7sseq12d 3533 . . . . . . 7  |-  ( a  =  f  ->  (
( a `  suc  x )  C_  (
a `  x )  <->  ( f `  suc  x
)  C_  ( f `  x ) ) )
98ralbidv 2903 . . . . . 6  |-  ( a  =  f  ->  ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  <->  A. x  e.  om  (
f `  suc  x ) 
C_  ( f `  x ) ) )
105, 9syl5bb 257 . . . . 5  |-  ( a  =  f  ->  ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  <->  A. x  e.  om  (
f `  suc  x ) 
C_  ( f `  x ) ) )
11 rneq 5226 . . . . . . 7  |-  ( a  =  f  ->  ran  a  =  ran  f )
1211inteqd 4287 . . . . . 6  |-  ( a  =  f  ->  |^| ran  a  =  |^| ran  f
)
1312, 11eleq12d 2549 . . . . 5  |-  ( a  =  f  ->  ( |^| ran  a  e.  ran  a 
<-> 
|^| ran  f  e.  ran  f ) )
1410, 13imbi12d 320 . . . 4  |-  ( a  =  f  ->  (
( A. b  e. 
om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a )  <->  ( A. x  e.  om  (
f `  suc  x ) 
C_  ( f `  x )  ->  |^| ran  f  e.  ran  f ) ) )
1514cbvralv 3088 . . 3  |-  ( A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a )  <->  A. f  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) )
16 pweq 4013 . . . . 5  |-  ( g  =  A  ->  ~P g  =  ~P A
)
1716oveq1d 6297 . . . 4  |-  ( g  =  A  ->  ( ~P g  ^m  om )  =  ( ~P A  ^m  om ) )
1817raleqdv 3064 . . 3  |-  ( g  =  A  ->  ( A. f  e.  ( ~P g  ^m  om )
( A. x  e. 
om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f )  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
1915, 18syl5bb 257 . 2  |-  ( g  =  A  ->  ( A. a  e.  ( ~P g  ^m  om )
( A. b  e. 
om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a )  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
20 isfin3ds.f . 2  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. b  e.  om  ( a `  suc  b )  C_  (
a `  b )  ->  |^| ran  a  e. 
ran  a ) }
2119, 20elab2g 3252 1  |-  ( A  e.  V  ->  ( A  e.  F  <->  A. f  e.  ( ~P A  ^m  om ) ( A. x  e.  om  ( f `  suc  x )  C_  (
f `  x )  ->  |^| ran  f  e. 
ran  f ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814    C_ wss 3476   ~Pcpw 4010   |^|cint 4282   suc csuc 4880   ran crn 5000   ` cfv 5586  (class class class)co 6282   omcom 6678    ^m cmap 7417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-suc 4884  df-cnv 5007  df-dm 5009  df-rn 5010  df-iota 5549  df-fv 5594  df-ov 6285
This theorem is referenced by:  ssfin3ds  8706  fin23lem17  8714  fin23lem39  8726  fin23lem40  8727  isf32lem12  8740  isfin3-3  8744
  Copyright terms: Public domain W3C validator