MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1a Structured version   Unicode version

Theorem isfin1a 8562
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin1a  |-  ( A  e.  V  ->  ( A  e. FinIa 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin1a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 3961 . . 3  |-  ( x  =  A  ->  ~P x  =  ~P A
)
2 difeq1 3565 . . . . 5  |-  ( x  =  A  ->  (
x  \  y )  =  ( A  \ 
y ) )
32eleq1d 2520 . . . 4  |-  ( x  =  A  ->  (
( x  \  y
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
43orbi2d 701 . . 3  |-  ( x  =  A  ->  (
( y  e.  Fin  \/  ( x  \  y
)  e.  Fin )  <->  ( y  e.  Fin  \/  ( A  \  y
)  e.  Fin )
) )
51, 4raleqbidv 3027 . 2  |-  ( x  =  A  ->  ( A. y  e.  ~P  x ( y  e. 
Fin  \/  ( x  \  y )  e.  Fin ) 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
6 df-fin1a 8555 . 2  |- FinIa  =  {
x  |  A. y  e.  ~P  x ( y  e.  Fin  \/  (
x  \  y )  e.  Fin ) }
75, 6elab2g 3205 1  |-  ( A  e.  V  ->  ( A  e. FinIa 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    = wceq 1370    e. wcel 1758   A.wral 2795    \ cdif 3423   ~Pcpw 3958   Fincfn 7410  FinIacfin1a 8548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ral 2800  df-rab 2804  df-v 3070  df-dif 3429  df-in 3433  df-ss 3440  df-pw 3960  df-fin1a 8555
This theorem is referenced by:  fin1ai  8563  fin11a  8653  enfin1ai  8654
  Copyright terms: Public domain W3C validator