MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfild Structured version   Unicode version

Theorem isfild 20186
Description: Sufficient condition for a set of the form  { x  e.  ~P A  |  ph } to be a filter. (Contributed by Mario Carneiro, 1-Dec-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Hypotheses
Ref Expression
isfild.1  |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )
isfild.2  |-  ( ph  ->  A  e.  _V )
isfild.3  |-  ( ph  ->  [. A  /  x ]. ps )
isfild.4  |-  ( ph  ->  -.  [. (/)  /  x ]. ps )
isfild.5  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  [. y  /  x ]. ps ) )
isfild.6  |-  ( (
ph  /\  y  C_  A  /\  z  C_  A
)  ->  ( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. ( y  i^i  z )  /  x ]. ps ) )
Assertion
Ref Expression
isfild  |-  ( ph  ->  F  e.  ( Fil `  A ) )
Distinct variable groups:    x, y, A    z, A    x, F, y    y, z, F    ph, x, y    ph, z    ps, y
Allowed substitution hints:    ps( x, z)

Proof of Theorem isfild
StepHypRef Expression
1 isfild.1 . . . . 5  |-  ( ph  ->  ( x  e.  F  <->  ( x  C_  A  /\  ps ) ) )
2 selpw 4017 . . . . . . 7  |-  ( x  e.  ~P A  <->  x  C_  A
)
32biimpri 206 . . . . . 6  |-  ( x 
C_  A  ->  x  e.  ~P A )
43adantr 465 . . . . 5  |-  ( ( x  C_  A  /\  ps )  ->  x  e. 
~P A )
51, 4syl6bi 228 . . . 4  |-  ( ph  ->  ( x  e.  F  ->  x  e.  ~P A
) )
65ssrdv 3510 . . 3  |-  ( ph  ->  F  C_  ~P A
)
7 isfild.4 . . . 4  |-  ( ph  ->  -.  [. (/)  /  x ]. ps )
8 isfild.2 . . . . . 6  |-  ( ph  ->  A  e.  _V )
91, 8isfildlem 20185 . . . . 5  |-  ( ph  ->  ( (/)  e.  F  <->  (
(/)  C_  A  /\  [. (/)  /  x ]. ps ) ) )
10 simpr 461 . . . . 5  |-  ( (
(/)  C_  A  /\  [. (/)  /  x ]. ps )  ->  [. (/)  /  x ]. ps )
119, 10syl6bi 228 . . . 4  |-  ( ph  ->  ( (/)  e.  F  ->  [. (/)  /  x ]. ps ) )
127, 11mtod 177 . . 3  |-  ( ph  ->  -.  (/)  e.  F )
13 isfild.3 . . . . 5  |-  ( ph  ->  [. A  /  x ]. ps )
14 ssid 3523 . . . . 5  |-  A  C_  A
1513, 14jctil 537 . . . 4  |-  ( ph  ->  ( A  C_  A  /\  [. A  /  x ]. ps ) )
161, 8isfildlem 20185 . . . 4  |-  ( ph  ->  ( A  e.  F  <->  ( A  C_  A  /\  [. A  /  x ]. ps ) ) )
1715, 16mpbird 232 . . 3  |-  ( ph  ->  A  e.  F )
186, 12, 173jca 1176 . 2  |-  ( ph  ->  ( F  C_  ~P A  /\  -.  (/)  e.  F  /\  A  e.  F
) )
19 elpwi 4019 . . . 4  |-  ( y  e.  ~P A  -> 
y  C_  A )
20 isfild.5 . . . . . . . . . . 11  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  [. y  /  x ]. ps ) )
21 simp2 997 . . . . . . . . . . 11  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  y  C_  A )
2220, 21jctild 543 . . . . . . . . . 10  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( [. z  /  x ]. ps  ->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
2322adantld 467 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( (
z  C_  A  /\  [. z  /  x ]. ps )  ->  ( y 
C_  A  /\  [. y  /  x ]. ps )
) )
241, 8isfildlem 20185 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  F  <->  ( z  C_  A  /\  [. z  /  x ]. ps ) ) )
25243ad2ant1 1017 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( z  e.  F  <->  ( z  C_  A  /\  [. z  /  x ]. ps ) ) )
261, 8isfildlem 20185 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  F  <->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
27263ad2ant1 1017 . . . . . . . . 9  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( y  e.  F  <->  ( y  C_  A  /\  [. y  /  x ]. ps ) ) )
2823, 25, 273imtr4d 268 . . . . . . . 8  |-  ( (
ph  /\  y  C_  A  /\  z  C_  y
)  ->  ( z  e.  F  ->  y  e.  F ) )
29283expa 1196 . . . . . . 7  |-  ( ( ( ph  /\  y  C_  A )  /\  z  C_  y )  ->  (
z  e.  F  -> 
y  e.  F ) )
3029impancom 440 . . . . . 6  |-  ( ( ( ph  /\  y  C_  A )  /\  z  e.  F )  ->  (
z  C_  y  ->  y  e.  F ) )
3130rexlimdva 2955 . . . . 5  |-  ( (
ph  /\  y  C_  A )  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F ) )
3231ex 434 . . . 4  |-  ( ph  ->  ( y  C_  A  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F ) ) )
3319, 32syl5 32 . . 3  |-  ( ph  ->  ( y  e.  ~P A  ->  ( E. z  e.  F  z  C_  y  ->  y  e.  F
) ) )
3433ralrimiv 2876 . 2  |-  ( ph  ->  A. y  e.  ~P  A ( E. z  e.  F  z  C_  y  ->  y  e.  F
) )
35 ssinss1 3726 . . . . . . 7  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
3635ad2antrr 725 . . . . . 6  |-  ( ( ( y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) )  ->  (
y  i^i  z )  C_  A )
3736a1i 11 . . . . 5  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  -> 
( y  i^i  z
)  C_  A )
)
38 an4 822 . . . . . 6  |-  ( ( ( y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) )  <->  ( (
y  C_  A  /\  z  C_  A )  /\  ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )
) )
39 isfild.6 . . . . . . . 8  |-  ( (
ph  /\  y  C_  A  /\  z  C_  A
)  ->  ( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. ( y  i^i  z )  /  x ]. ps ) )
40393expb 1197 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  z  C_  A ) )  -> 
( ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )  ->  [. (
y  i^i  z )  /  x ]. ps )
)
4140expimpd 603 . . . . . 6  |-  ( ph  ->  ( ( ( y 
C_  A  /\  z  C_  A )  /\  ( [. y  /  x ]. ps  /\  [. z  /  x ]. ps )
)  ->  [. ( y  i^i  z )  /  x ]. ps ) )
4238, 41syl5bi 217 . . . . 5  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  ->  [. ( y  i^i  z
)  /  x ]. ps ) )
4337, 42jcad 533 . . . 4  |-  ( ph  ->  ( ( ( y 
C_  A  /\  [. y  /  x ]. ps )  /\  ( z  C_  A  /\  [. z  /  x ]. ps ) )  -> 
( ( y  i^i  z )  C_  A  /\  [. ( y  i^i  z )  /  x ]. ps ) ) )
4426, 24anbi12d 710 . . . 4  |-  ( ph  ->  ( ( y  e.  F  /\  z  e.  F )  <->  ( (
y  C_  A  /\  [. y  /  x ]. ps )  /\  (
z  C_  A  /\  [. z  /  x ]. ps ) ) ) )
451, 8isfildlem 20185 . . . 4  |-  ( ph  ->  ( ( y  i^i  z )  e.  F  <->  ( ( y  i^i  z
)  C_  A  /\  [. ( y  i^i  z
)  /  x ]. ps ) ) )
4643, 44, 453imtr4d 268 . . 3  |-  ( ph  ->  ( ( y  e.  F  /\  z  e.  F )  ->  (
y  i^i  z )  e.  F ) )
4746ralrimivv 2884 . 2  |-  ( ph  ->  A. y  e.  F  A. z  e.  F  ( y  i^i  z
)  e.  F )
48 isfil2 20184 . 2  |-  ( F  e.  ( Fil `  A
)  <->  ( ( F 
C_  ~P A  /\  -.  (/) 
e.  F  /\  A  e.  F )  /\  A. y  e.  ~P  A
( E. z  e.  F  z  C_  y  ->  y  e.  F )  /\  A. y  e.  F  A. z  e.  F  ( y  i^i  z )  e.  F
) )
4918, 34, 47, 48syl3anbrc 1180 1  |-  ( ph  ->  F  e.  ( Fil `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113   [.wsbc 3331    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   ` cfv 5588   Filcfil 20173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fv 5596  df-fbas 18227  df-fil 20174
This theorem is referenced by:  snfil  20192  fgcl  20206  filuni  20213  cfinfil  20221  csdfil  20222  supfil  20223  fin1aufil  20260
  Copyright terms: Public domain W3C validator