MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Unicode version

Theorem isfcls 19482
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x  |-  X  = 
U. J
Assertion
Ref Expression
isfcls  |-  ( A  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Distinct variable groups:    A, s    F, s    X, s    J, s

Proof of Theorem isfcls
Dummy variables  f 
j  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 644 . 2  |-  ( ( ( ( J  e. 
Top  /\  F  e.  U.
ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
2 fvssunirn 5710 . . . . . . . 8  |-  ( Fil `  X )  C_  U. ran  Fil
32sseli 3349 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  U.
ran  Fil )
4 filunibas 19354 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
54eqcomd 2446 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  X  =  U. F )
63, 5jca 529 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  U. ran  Fil  /\  X  =  U. F ) )
7 filunirn 19355 . . . . . . 7  |-  ( F  e.  U. ran  Fil  <->  F  e.  ( Fil `  U. F ) )
8 fveq2 5688 . . . . . . . . 9  |-  ( X  =  U. F  -> 
( Fil `  X
)  =  ( Fil `  U. F ) )
98eleq2d 2508 . . . . . . . 8  |-  ( X  =  U. F  -> 
( F  e.  ( Fil `  X )  <-> 
F  e.  ( Fil `  U. F ) ) )
109biimparc 484 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. F )  /\  X  =  U. F )  ->  F  e.  ( Fil `  X ) )
117, 10sylanb 469 . . . . . 6  |-  ( ( F  e.  U. ran  Fil 
/\  X  =  U. F )  ->  F  e.  ( Fil `  X
) )
126, 11impbii 188 . . . . 5  |-  ( F  e.  ( Fil `  X
)  <->  ( F  e. 
U. ran  Fil  /\  X  =  U. F ) )
1312anbi2i 689 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  <->  ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) ) )
1413anbi1i 690 . . 3  |-  ( ( ( J  e.  Top  /\  F  e.  ( Fil `  X ) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
15 df-3an 962 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  F  e.  ( Fil `  X
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
16 anass 644 . . . 4  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  <->  ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) ) )
1716anbi1i 690 . . 3  |-  ( ( ( ( J  e. 
Top  /\  F  e.  U.
ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( J  e.  Top  /\  ( F  e.  U. ran  Fil  /\  X  =  U. F
) )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
1814, 15, 173bitr4i 277 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  <->  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  =  U. F )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
19 df-fcls 19414 . . . 4  |-  fClus  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  if ( U. j  =  U. f ,  |^|_ x  e.  f  ( ( cls `  j ) `
 x ) ,  (/) ) )
2019elmpt2cl 6303 . . 3  |-  ( A  e.  ( J  fClus  F )  ->  ( J  e.  Top  /\  F  e. 
U. ran  Fil )
)
21 fclsval.x . . . . . . 7  |-  X  = 
U. J
2221fclsval 19481 . . . . . 6  |-  ( ( J  e.  Top  /\  F  e.  ( Fil ` 
U. F ) )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )
237, 22sylan2b 472 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )
2423eleq2d 2508 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  ( J  fClus  F )  <-> 
A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) ) )
25 n0i 3639 . . . . . . 7  |-  ( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) )  ->  -.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  =  (/) )
26 iffalse 3796 . . . . . . 7  |-  ( -.  X  =  U. F  ->  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  =  (/) )
2725, 26nsyl2 127 . . . . . 6  |-  ( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) )  ->  X  =  U. F )
2827a1i 11 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  ->  X  =  U. F ) )
2928pm4.71rd 630 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) )  <->  ( X  =  U. F  /\  A  e.  if ( X  = 
U. F ,  |^|_ s  e.  F  (
( cls `  J
) `  s ) ,  (/) ) ) ) )
30 iftrue 3794 . . . . . . . 8  |-  ( X  =  U. F  ->  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  = 
|^|_ s  e.  F  ( ( cls `  J
) `  s )
)
3130adantl 463 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  ->  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  = 
|^|_ s  e.  F  ( ( cls `  J
) `  s )
)
3231eleq2d 2508 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  <->  A  e.  |^|_ s  e.  F  ( ( cls `  J
) `  s )
) )
33 elex 2979 . . . . . . . 8  |-  ( A  e.  |^|_ s  e.  F  ( ( cls `  J
) `  s )  ->  A  e.  _V )
3433a1i 11 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  ->  A  e.  _V )
)
35 filn0 19335 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. F )  ->  F  =/=  (/) )
367, 35sylbi 195 . . . . . . . . . 10  |-  ( F  e.  U. ran  Fil  ->  F  =/=  (/) )
3736ad2antlr 721 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  ->  F  =/=  (/) )
38 r19.2z 3766 . . . . . . . . . 10  |-  ( ( F  =/=  (/)  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)
3938ex 434 . . . . . . . . 9  |-  ( F  =/=  (/)  ->  ( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
4037, 39syl 16 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
41 elex 2979 . . . . . . . . 9  |-  ( A  e.  ( ( cls `  J ) `  s
)  ->  A  e.  _V )
4241rexlimivw 2835 . . . . . . . 8  |-  ( E. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  A  e.  _V )
4340, 42syl6 33 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  A  e.  _V )
)
44 eliin 4173 . . . . . . . 8  |-  ( A  e.  _V  ->  ( A  e.  |^|_ s  e.  F  ( ( cls `  J ) `  s
)  <->  A. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
4544a1i 11 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  _V  ->  ( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
4634, 43, 45pm5.21ndd 354 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  |^|_ s  e.  F  (
( cls `  J
) `  s )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
4732, 46bitrd 253 . . . . 5  |-  ( ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  X  = 
U. F )  -> 
( A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J ) `  s
) ,  (/) )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
4847pm5.32da 636 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( ( X  =  U. F  /\  A  e.  if ( X  =  U. F ,  |^|_ s  e.  F  ( ( cls `  J
) `  s ) ,  (/) ) )  <->  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
4924, 29, 483bitrd 279 . . 3  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  ->  ( A  e.  ( J  fClus  F )  <-> 
( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
5020, 49biadan2 637 . 2  |-  ( A  e.  ( J  fClus  F )  <->  ( ( J  e.  Top  /\  F  e.  U. ran  Fil )  /\  ( X  =  U. F  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
511, 18, 503bitr4ri 278 1  |-  ( A  e.  ( J  fClus  F )  <->  ( J  e. 
Top  /\  F  e.  ( Fil `  X )  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970   (/)c0 3634   ifcif 3788   U.cuni 4088   |^|_ciin 4169   ran crn 4837   ` cfv 5415  (class class class)co 6090   Topctop 18398   clsccl 18522   Filcfil 19318    fClus cfcls 19409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-fbas 17714  df-fil 19319  df-fcls 19414
This theorem is referenced by:  fclsfil  19483  fclstop  19484  isfcls2  19486  fclssscls  19491  flimfcls  19499
  Copyright terms: Public domain W3C validator