MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Unicode version

Theorem isfcf 19566
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, J    o, L, s    o, F, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isfcf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fcfval 19565 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
21eleq2d 2508 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 983 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 18492 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 filfbas 19380 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
6 id 22 . . . 4  |-  ( F : Y --> X  ->  F : Y --> X )
7 fmfil 19476 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
84, 5, 6, 7syl3an 1255 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
9 fclsopn 19546 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
103, 8, 9syl2anc 656 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
11 simpll1 1022 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  J  e.  (TopOn `  X )
)
1211, 4syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  X  e.  J )
13 simpll2 1023 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( Fil `  Y
) )
1413, 5syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( fBas `  Y
) )
15 simpll3 1024 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  F : Y --> X )
16 simpl2 987 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  L  e.  ( Fil `  Y
) )
17 fgfil 19407 . . . . . . . . . . . 12  |-  ( L  e.  ( Fil `  Y
)  ->  ( Y filGen L )  =  L )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( Y filGen L )  =  L )
1918eleq2d 2508 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
s  e.  ( Y
filGen L )  <->  s  e.  L ) )
2019biimpar 482 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  s  e.  ( Y filGen L ) )
21 eqid 2441 . . . . . . . . . 10  |-  ( Y
filGen L )  =  ( Y filGen L )
2221imaelfm 19483 . . . . . . . . 9  |-  ( ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen L ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 L ) )
2312, 14, 15, 20, 22syl31anc 1216 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  L ) )
24 ineq2 3543 . . . . . . . . . 10  |-  ( x  =  ( F "
s )  ->  (
o  i^i  x )  =  ( o  i^i  ( F " s
) ) )
2524neeq1d 2619 . . . . . . . . 9  |-  ( x  =  ( F "
s )  ->  (
( o  i^i  x
)  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2625rspcv 3066 . . . . . . . 8  |-  ( ( F " s )  e.  ( ( X 
FilMap  F ) `  L
)  ->  ( A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2723, 26syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2827ralrimdva 2804 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
29 elfm 19479 . . . . . . . . . . 11  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( x  e.  ( ( X  FilMap  F ) `
 L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
304, 5, 6, 29syl3an 1255 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3130adantr 462 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3231simplbda 621 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  E. s  e.  L  ( F " s )  C_  x
)
33 r19.29r 2856 . . . . . . . . . 10  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  E. s  e.  L  ( ( F " s )  C_  x  /\  ( o  i^i  ( F " s
) )  =/=  (/) ) )
34 sslin 3573 . . . . . . . . . . . 12  |-  ( ( F " s ) 
C_  x  ->  (
o  i^i  ( F " s ) )  C_  ( o  i^i  x
) )
35 ssn0 3667 . . . . . . . . . . . 12  |-  ( ( ( o  i^i  ( F " s ) ) 
C_  ( o  i^i  x )  /\  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3634, 35sylan 468 . . . . . . . . . . 11  |-  ( ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3736rexlimivw 2835 . . . . . . . . . 10  |-  ( E. s  e.  L  ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3833, 37syl 16 . . . . . . . . 9  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3938ex 434 . . . . . . . 8  |-  ( E. s  e.  L  ( F " s ) 
C_  x  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4032, 39syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4140ralrimdva 2804 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) )
4228, 41impbid 191 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4342imbi2d 316 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4443ralbidva 2729 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4544anbi2d 698 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
462, 10, 453bitrd 279 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714    i^i cin 3324    C_ wss 3325   (/)c0 3634   "cima 4839   -->wf 5411   ` cfv 5415  (class class class)co 6090   fBascfbas 17763   filGencfg 17764  TopOnctopon 18458   Filcfil 19377    FilMap cfm 19465    fClus cfcls 19468    fClusf cfcf 19469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-map 7212  df-fbas 17773  df-fg 17774  df-top 18462  df-topon 18465  df-cld 18582  df-ntr 18583  df-cls 18584  df-fil 19378  df-fm 19470  df-fcls 19473  df-fcf 19474
This theorem is referenced by:  fcfnei  19567
  Copyright terms: Public domain W3C validator