MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Unicode version

Theorem isfcf 19723
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, J    o, L, s    o, F, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isfcf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fcfval 19722 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
21eleq2d 2521 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 988 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 18649 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 filfbas 19537 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
6 id 22 . . . 4  |-  ( F : Y --> X  ->  F : Y --> X )
7 fmfil 19633 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
84, 5, 6, 7syl3an 1261 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
9 fclsopn 19703 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
103, 8, 9syl2anc 661 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
11 simpll1 1027 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  J  e.  (TopOn `  X )
)
1211, 4syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  X  e.  J )
13 simpll2 1028 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( Fil `  Y
) )
1413, 5syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( fBas `  Y
) )
15 simpll3 1029 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  F : Y --> X )
16 simpl2 992 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  L  e.  ( Fil `  Y
) )
17 fgfil 19564 . . . . . . . . . . . 12  |-  ( L  e.  ( Fil `  Y
)  ->  ( Y filGen L )  =  L )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( Y filGen L )  =  L )
1918eleq2d 2521 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
s  e.  ( Y
filGen L )  <->  s  e.  L ) )
2019biimpar 485 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  s  e.  ( Y filGen L ) )
21 eqid 2451 . . . . . . . . . 10  |-  ( Y
filGen L )  =  ( Y filGen L )
2221imaelfm 19640 . . . . . . . . 9  |-  ( ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen L ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 L ) )
2312, 14, 15, 20, 22syl31anc 1222 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  L ) )
24 ineq2 3644 . . . . . . . . . 10  |-  ( x  =  ( F "
s )  ->  (
o  i^i  x )  =  ( o  i^i  ( F " s
) ) )
2524neeq1d 2725 . . . . . . . . 9  |-  ( x  =  ( F "
s )  ->  (
( o  i^i  x
)  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2625rspcv 3165 . . . . . . . 8  |-  ( ( F " s )  e.  ( ( X 
FilMap  F ) `  L
)  ->  ( A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2723, 26syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2827ralrimdva 2902 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
29 elfm 19636 . . . . . . . . . . 11  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( x  e.  ( ( X  FilMap  F ) `
 L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
304, 5, 6, 29syl3an 1261 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3130adantr 465 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3231simplbda 624 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  E. s  e.  L  ( F " s )  C_  x
)
33 r19.29r 2954 . . . . . . . . . 10  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  E. s  e.  L  ( ( F " s )  C_  x  /\  ( o  i^i  ( F " s
) )  =/=  (/) ) )
34 sslin 3674 . . . . . . . . . . . 12  |-  ( ( F " s ) 
C_  x  ->  (
o  i^i  ( F " s ) )  C_  ( o  i^i  x
) )
35 ssn0 3768 . . . . . . . . . . . 12  |-  ( ( ( o  i^i  ( F " s ) ) 
C_  ( o  i^i  x )  /\  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3634, 35sylan 471 . . . . . . . . . . 11  |-  ( ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3736rexlimivw 2933 . . . . . . . . . 10  |-  ( E. s  e.  L  ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3833, 37syl 16 . . . . . . . . 9  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3938ex 434 . . . . . . . 8  |-  ( E. s  e.  L  ( F " s ) 
C_  x  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4032, 39syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4140ralrimdva 2902 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) )
4228, 41impbid 191 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4342imbi2d 316 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4443ralbidva 2837 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4544anbi2d 703 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
462, 10, 453bitrd 279 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796    i^i cin 3425    C_ wss 3426   (/)c0 3735   "cima 4941   -->wf 5512   ` cfv 5516  (class class class)co 6190   fBascfbas 17913   filGencfg 17914  TopOnctopon 18615   Filcfil 19534    FilMap cfm 19622    fClus cfcls 19625    fClusf cfcf 19626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-iin 4272  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-map 7316  df-fbas 17923  df-fg 17924  df-top 18619  df-topon 18622  df-cld 18739  df-ntr 18740  df-cls 18741  df-fil 19535  df-fm 19627  df-fcls 19630  df-fcf 19631
This theorem is referenced by:  fcfnei  19724
  Copyright terms: Public domain W3C validator