Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   Unicode version

Theorem isfbas 20837
 Description: The predicate " is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,)

Proof of Theorem isfbas
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4586 . . . . 5
2 elpw2g 4565 . . . . 5
31, 2syl 17 . . . 4
43anbi1d 710 . . 3
5 elex 3053 . . . 4
65biantrurd 511 . . 3
74, 6bitr3d 259 . 2
8 df-fbas 18960 . . . 4
9 neeq1 2685 . . . . . 6
10 neleq2 2729 . . . . . 6
11 ineq1 3626 . . . . . . . . 9
1211neeq1d 2682 . . . . . . . 8
1312raleqbi1dv 2994 . . . . . . 7
1413raleqbi1dv 2994 . . . . . 6
159, 10, 143anbi123d 1338 . . . . 5
1615adantl 468 . . . 4
17 pweq 3953 . . . . 5
1817pweqd 3955 . . . 4
19 vex 3047 . . . . . . 7
2019pwex 4585 . . . . . 6
2120pwex 4585 . . . . 5
2221a1i 11 . . . 4
238, 16, 18, 22elmptrab 20835 . . 3
24 3anass 988 . . 3
2523, 24bitri 253 . 2
267, 25syl6rbbr 268 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 188   wa 371   w3a 984   wceq 1443   wcel 1886   wne 2621   wnel 2622  wral 2736  cvv 3044   cin 3402   wss 3403  c0 3730  cpw 3950  cfv 5581  cfbas 18951 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638 This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fv 5589  df-fbas 18960 This theorem is referenced by:  fbasne0  20838  0nelfb  20839  fbsspw  20840  isfbas2  20843  trfbas2  20851  fbasweak  20873  zfbas  20904  tsmsfbas  21135  ustfilxp  21220  minveclem3b  22363  minveclem3bOLD  22375
 Copyright terms: Public domain W3C validator