MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem7 Structured version   Unicode version

Theorem isf34lem7 8560
Description: Lemma for isfin3-4 8563. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem7  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  U. ran  G  e.  ran  G )
Distinct variable groups:    x, y, A    y, F    y, G
Allowed substitution hints:    F( x)    G( x)

Proof of Theorem isf34lem7
StepHypRef Expression
1 compss.a . . . . . . 7  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
21isf34lem2 8554 . . . . . 6  |-  ( A  e. FinIII  ->  F : ~P A
--> ~P A )
32adantr 465 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  F : ~P A --> ~P A
)
433adant3 1008 . . . 4  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  F : ~P A --> ~P A
)
5 ffn 5571 . . . 4  |-  ( F : ~P A --> ~P A  ->  F  Fn  ~P A
)
64, 5syl 16 . . 3  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  F  Fn  ~P A
)
7 imassrn 5192 . . . 4  |-  ( F
" ran  G )  C_ 
ran  F
8 frn 5577 . . . . . 6  |-  ( F : ~P A --> ~P A  ->  ran  F  C_  ~P A )
93, 8syl 16 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  ran  F  C_  ~P A
)
1093adant3 1008 . . . 4  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  ran  F  C_  ~P A
)
117, 10syl5ss 3379 . . 3  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  -> 
( F " ran  G )  C_  ~P A
)
12 simp1 988 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  A  e. FinIII )
13 fco 5580 . . . . . . 7  |-  ( ( F : ~P A --> ~P A  /\  G : om
--> ~P A )  -> 
( F  o.  G
) : om --> ~P A
)
142, 13sylan 471 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F  o.  G
) : om --> ~P A
)
15143adant3 1008 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  -> 
( F  o.  G
) : om --> ~P A
)
16 sscon 3502 . . . . . . . 8  |-  ( ( G `  y ) 
C_  ( G `  suc  y )  ->  ( A  \  ( G `  suc  y ) )  C_  ( A  \  ( G `  y )
) )
17 simpr 461 . . . . . . . . . . 11  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  G : om --> ~P A
)
18 peano2 6508 . . . . . . . . . . 11  |-  ( y  e.  om  ->  suc  y  e.  om )
19 fvco3 5780 . . . . . . . . . . 11  |-  ( ( G : om --> ~P A  /\  suc  y  e.  om )  ->  ( ( F  o.  G ) `  suc  y )  =  ( F `  ( G `
 suc  y )
) )
2017, 18, 19syl2an 477 . . . . . . . . . 10  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( F  o.  G ) `  suc  y )  =  ( F `  ( G `
 suc  y )
) )
21 simpll 753 . . . . . . . . . . 11  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  A  e. FinIII )
22 ffvelrn 5853 . . . . . . . . . . . . 13  |-  ( ( G : om --> ~P A  /\  suc  y  e.  om )  ->  ( G `  suc  y )  e.  ~P A )
2317, 18, 22syl2an 477 . . . . . . . . . . . 12  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( G `  suc  y )  e.  ~P A )
2423elpwid 3882 . . . . . . . . . . 11  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( G `  suc  y )  C_  A
)
251isf34lem1 8553 . . . . . . . . . . 11  |-  ( ( A  e. FinIII  /\  ( G `  suc  y )  C_  A )  ->  ( F `  ( G `  suc  y ) )  =  ( A  \ 
( G `  suc  y ) ) )
2621, 24, 25syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( F `  ( G `  suc  y
) )  =  ( A  \  ( G `
 suc  y )
) )
2720, 26eqtrd 2475 . . . . . . . . 9  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( F  o.  G ) `  suc  y )  =  ( A  \  ( G `
 suc  y )
) )
28 fvco3 5780 . . . . . . . . . . 11  |-  ( ( G : om --> ~P A  /\  y  e.  om )  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
2928adantll 713 . . . . . . . . . 10  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( F  o.  G ) `  y )  =  ( F `  ( G `
 y ) ) )
30 ffvelrn 5853 . . . . . . . . . . . . 13  |-  ( ( G : om --> ~P A  /\  y  e.  om )  ->  ( G `  y )  e.  ~P A )
3130adantll 713 . . . . . . . . . . . 12  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( G `  y )  e.  ~P A )
3231elpwid 3882 . . . . . . . . . . 11  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( G `  y )  C_  A
)
331isf34lem1 8553 . . . . . . . . . . 11  |-  ( ( A  e. FinIII  /\  ( G `  y )  C_  A
)  ->  ( F `  ( G `  y
) )  =  ( A  \  ( G `
 y ) ) )
3421, 32, 33syl2anc 661 . . . . . . . . . 10  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( F `  ( G `  y ) )  =  ( A 
\  ( G `  y ) ) )
3529, 34eqtrd 2475 . . . . . . . . 9  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( F  o.  G ) `  y )  =  ( A  \  ( G `
 y ) ) )
3627, 35sseq12d 3397 . . . . . . . 8  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( ( F  o.  G ) `
 suc  y )  C_  ( ( F  o.  G ) `  y
)  <->  ( A  \ 
( G `  suc  y ) )  C_  ( A  \  ( G `  y )
) ) )
3716, 36syl5ibr 221 . . . . . . 7  |-  ( ( ( A  e. FinIII  /\  G : om --> ~P A )  /\  y  e.  om )  ->  ( ( G `
 y )  C_  ( G `  suc  y
)  ->  ( ( F  o.  G ) `  suc  y )  C_  ( ( F  o.  G ) `  y
) ) )
3837ralimdva 2806 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( A. y  e. 
om  ( G `  y )  C_  ( G `  suc  y )  ->  A. y  e.  om  ( ( F  o.  G ) `  suc  y )  C_  (
( F  o.  G
) `  y )
) )
39383impia 1184 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  A. y  e.  om  ( ( F  o.  G ) `  suc  y )  C_  (
( F  o.  G
) `  y )
)
40 fin33i 8550 . . . . 5  |-  ( ( A  e. FinIII  /\  ( F  o.  G ) : om --> ~P A  /\  A. y  e.  om  ( ( F  o.  G ) `  suc  y )  C_  (
( F  o.  G
) `  y )
)  ->  |^| ran  ( F  o.  G )  e.  ran  ( F  o.  G ) )
4112, 15, 39, 40syl3anc 1218 . . . 4  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  |^| ran  ( F  o.  G )  e.  ran  ( F  o.  G
) )
42 rnco2 5357 . . . . 5  |-  ran  ( F  o.  G )  =  ( F " ran  G )
4342inteqi 4144 . . . 4  |-  |^| ran  ( F  o.  G
)  =  |^| ( F " ran  G )
4441, 43, 423eltr3g 2525 . . 3  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  |^| ( F " ran  G )  e.  ( F
" ran  G )
)
45 fnfvima 5967 . . 3  |-  ( ( F  Fn  ~P A  /\  ( F " ran  G )  C_  ~P A  /\  |^| ( F " ran  G )  e.  ( F " ran  G
) )  ->  ( F `  |^| ( F
" ran  G )
)  e.  ( F
" ( F " ran  G ) ) )
466, 11, 44, 45syl3anc 1218 . 2  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  -> 
( F `  |^| ( F " ran  G
) )  e.  ( F " ( F
" ran  G )
) )
47 simpl 457 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  A  e. FinIII )
487, 9syl5ss 3379 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F " ran  G )  C_  ~P A
)
49 incom 3555 . . . . . . . . 9  |-  ( dom 
F  i^i  ran  G )  =  ( ran  G  i^i  dom  F )
50 frn 5577 . . . . . . . . . . . 12  |-  ( G : om --> ~P A  ->  ran  G  C_  ~P A )
5150adantl 466 . . . . . . . . . . 11  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  ran  G  C_  ~P A
)
52 fdm 5575 . . . . . . . . . . . 12  |-  ( F : ~P A --> ~P A  ->  dom  F  =  ~P A )
533, 52syl 16 . . . . . . . . . . 11  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  dom  F  =  ~P A
)
5451, 53sseqtr4d 3405 . . . . . . . . . 10  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  ran  G  C_  dom  F )
55 df-ss 3354 . . . . . . . . . 10  |-  ( ran 
G  C_  dom  F  <->  ( ran  G  i^i  dom  F )  =  ran  G )
5654, 55sylib 196 . . . . . . . . 9  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( ran  G  i^i  dom 
F )  =  ran  G )
5749, 56syl5eq 2487 . . . . . . . 8  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( dom  F  i^i  ran 
G )  =  ran  G )
58 fdm 5575 . . . . . . . . . . 11  |-  ( G : om --> ~P A  ->  dom  G  =  om )
5958adantl 466 . . . . . . . . . 10  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  dom  G  =  om )
60 peano1 6507 . . . . . . . . . . 11  |-  (/)  e.  om
61 ne0i 3655 . . . . . . . . . . 11  |-  ( (/)  e.  om  ->  om  =/=  (/) )
6260, 61mp1i 12 . . . . . . . . . 10  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  om  =/=  (/) )
6359, 62eqnetrd 2638 . . . . . . . . 9  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  dom  G  =/=  (/) )
64 dm0rn0 5068 . . . . . . . . . 10  |-  ( dom 
G  =  (/)  <->  ran  G  =  (/) )
6564necon3bii 2652 . . . . . . . . 9  |-  ( dom 
G  =/=  (/)  <->  ran  G  =/=  (/) )
6663, 65sylib 196 . . . . . . . 8  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  ran  G  =/=  (/) )
6757, 66eqnetrd 2638 . . . . . . 7  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( dom  F  i^i  ran 
G )  =/=  (/) )
68 imadisj 5200 . . . . . . . 8  |-  ( ( F " ran  G
)  =  (/)  <->  ( dom  F  i^i  ran  G )  =  (/) )
6968necon3bii 2652 . . . . . . 7  |-  ( ( F " ran  G
)  =/=  (/)  <->  ( dom  F  i^i  ran  G )  =/=  (/) )
7067, 69sylibr 212 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F " ran  G )  =/=  (/) )
711isf34lem5 8559 . . . . . 6  |-  ( ( A  e. FinIII  /\  ( ( F " ran  G ) 
C_  ~P A  /\  ( F " ran  G )  =/=  (/) ) )  -> 
( F `  |^| ( F " ran  G
) )  =  U. ( F " ( F
" ran  G )
) )
7247, 48, 70, 71syl12anc 1216 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F `  |^| ( F " ran  G
) )  =  U. ( F " ( F
" ran  G )
) )
731isf34lem3 8556 . . . . . . 7  |-  ( ( A  e. FinIII  /\  ran  G  C_  ~P A )  ->  ( F " ( F " ran  G ) )  =  ran  G )
7447, 51, 73syl2anc 661 . . . . . 6  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F " ( F " ran  G ) )  =  ran  G
)
7574unieqd 4113 . . . . 5  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  ->  U. ( F " ( F " ran  G ) )  =  U. ran  G )
7672, 75eqtrd 2475 . . . 4  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( F `  |^| ( F " ran  G
) )  =  U. ran  G )
7776, 74eleq12d 2511 . . 3  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A )  -> 
( ( F `  |^| ( F " ran  G ) )  e.  ( F " ( F
" ran  G )
)  <->  U. ran  G  e. 
ran  G ) )
78773adant3 1008 . 2  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  -> 
( ( F `  |^| ( F " ran  G ) )  e.  ( F " ( F
" ran  G )
)  <->  U. ran  G  e. 
ran  G ) )
7946, 78mpbid 210 1  |-  ( ( A  e. FinIII  /\  G : om
--> ~P A  /\  A. y  e.  om  ( G `  y )  C_  ( G `  suc  y ) )  ->  U. ran  G  e.  ran  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727    \ cdif 3337    i^i cin 3339    C_ wss 3340   (/)c0 3649   ~Pcpw 3872   U.cuni 4103   |^|cint 4140    e. cmpt 4362   suc csuc 4733   dom cdm 4852   ran crn 4853   "cima 4855    o. ccom 4856    Fn wfn 5425   -->wf 5426   ` cfv 5430   omcom 6488  FinIIIcfin3 8462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4415  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-int 4141  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-se 4692  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-isom 5439  df-riota 6064  df-rpss 6372  df-om 6489  df-recs 6844  df-rdg 6878  df-1o 6932  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-fin 7326  df-wdom 7786  df-card 8121  df-fin4 8468  df-fin3 8469
This theorem is referenced by:  isf34lem6  8561  fin34i  8562
  Copyright terms: Public domain W3C validator