MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   Unicode version

Theorem isf34lem6 8841
Description: Lemma for isfin3-4 8843. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem6  |-  ( A  e.  V  ->  ( A  e. FinIII 
<-> 
A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f ) ) )
Distinct variable groups:    x, f,
y, A    f, F, y    x, V, y
Allowed substitution hints:    F( x)    V( f)

Proof of Theorem isf34lem6
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 elmapi 7524 . . . 4  |-  ( f  e.  ( ~P A  ^m  om )  ->  f : om --> ~P A )
2 compss.a . . . . . 6  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
32isf34lem7 8840 . . . . 5  |-  ( ( A  e. FinIII  /\  f : om
--> ~P A  /\  A. y  e.  om  (
f `  y )  C_  ( f `  suc  y ) )  ->  U. ran  f  e.  ran  f )
433expia 1217 . . . 4  |-  ( ( A  e. FinIII  /\  f : om
--> ~P A )  -> 
( A. y  e. 
om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f ) )
51, 4sylan2 481 . . 3  |-  ( ( A  e. FinIII  /\  f  e.  ( ~P A  ^m  om ) )  ->  ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  ->  U. ran  f  e.  ran  f ) )
65ralrimiva 2814 . 2  |-  ( A  e. FinIII  ->  A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f ) )
7 elmapex 7523 . . . . . . . . . . 11  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( ~P A  e.  _V  /\ 
om  e.  _V )
)
87simpld 465 . . . . . . . . . 10  |-  ( g  e.  ( ~P A  ^m  om )  ->  ~P A  e.  _V )
9 pwexb 6634 . . . . . . . . . 10  |-  ( A  e.  _V  <->  ~P A  e.  _V )
108, 9sylibr 217 . . . . . . . . 9  |-  ( g  e.  ( ~P A  ^m  om )  ->  A  e.  _V )
112isf34lem2 8834 . . . . . . . . 9  |-  ( A  e.  _V  ->  F : ~P A --> ~P A
)
1210, 11syl 17 . . . . . . . 8  |-  ( g  e.  ( ~P A  ^m  om )  ->  F : ~P A --> ~P A
)
13 elmapi 7524 . . . . . . . 8  |-  ( g  e.  ( ~P A  ^m  om )  ->  g : om --> ~P A )
14 fco 5766 . . . . . . . 8  |-  ( ( F : ~P A --> ~P A  /\  g : om --> ~P A )  ->  ( F  o.  g ) : om --> ~P A )
1512, 13, 14syl2anc 671 . . . . . . 7  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F  o.  g ) : om --> ~P A )
16 elmapg 7516 . . . . . . . 8  |-  ( ( ~P A  e.  _V  /\ 
om  e.  _V )  ->  ( ( F  o.  g )  e.  ( ~P A  ^m  om ) 
<->  ( F  o.  g
) : om --> ~P A
) )
177, 16syl 17 . . . . . . 7  |-  ( g  e.  ( ~P A  ^m  om )  ->  (
( F  o.  g
)  e.  ( ~P A  ^m  om )  <->  ( F  o.  g ) : om --> ~P A
) )
1815, 17mpbird 240 . . . . . 6  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F  o.  g )  e.  ( ~P A  ^m  om ) )
19 fveq1 5891 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  y )  =  ( ( F  o.  g ) `  y ) )
20 fveq1 5891 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  (
f `  suc  y )  =  ( ( F  o.  g ) `  suc  y ) )
2119, 20sseq12d 3473 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  (
( f `  y
)  C_  ( f `  suc  y )  <->  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y ) ) )
2221ralbidv 2839 . . . . . . . 8  |-  ( f  =  ( F  o.  g )  ->  ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  <->  A. y  e.  om  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y ) ) )
23 rneq 5082 . . . . . . . . . . 11  |-  ( f  =  ( F  o.  g )  ->  ran  f  =  ran  ( F  o.  g ) )
24 rnco2 5365 . . . . . . . . . . 11  |-  ran  ( F  o.  g )  =  ( F " ran  g )
2523, 24syl6eq 2512 . . . . . . . . . 10  |-  ( f  =  ( F  o.  g )  ->  ran  f  =  ( F " ran  g ) )
2625unieqd 4222 . . . . . . . . 9  |-  ( f  =  ( F  o.  g )  ->  U. ran  f  =  U. ( F " ran  g ) )
2726, 25eleq12d 2534 . . . . . . . 8  |-  ( f  =  ( F  o.  g )  ->  ( U. ran  f  e.  ran  f 
<-> 
U. ( F " ran  g )  e.  ( F " ran  g
) ) )
2822, 27imbi12d 326 . . . . . . 7  |-  ( f  =  ( F  o.  g )  ->  (
( A. y  e. 
om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f )  <->  ( A. y  e.  om  (
( F  o.  g
) `  y )  C_  ( ( F  o.  g ) `  suc  y )  ->  U. ( F " ran  g )  e.  ( F " ran  g ) ) ) )
2928rspccv 3159 . . . . . 6  |-  ( A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  ->  U. ran  f  e.  ran  f )  ->  (
( F  o.  g
)  e.  ( ~P A  ^m  om )  ->  ( A. y  e. 
om  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y )  ->  U. ( F " ran  g )  e.  ( F " ran  g
) ) ) )
3018, 29syl5 33 . . . . 5  |-  ( A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  ->  U. ran  f  e.  ran  f )  ->  (
g  e.  ( ~P A  ^m  om )  ->  ( A. y  e. 
om  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y )  ->  U. ( F " ran  g )  e.  ( F " ran  g
) ) ) )
31 sscon 3579 . . . . . . . . 9  |-  ( ( g `  suc  y
)  C_  ( g `  y )  ->  ( A  \  ( g `  y ) )  C_  ( A  \  (
g `  suc  y ) ) )
3210adantr 471 . . . . . . . . . . 11  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  A  e.  _V )
3313ffvelrnda 6050 . . . . . . . . . . . 12  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( g `  y )  e.  ~P A )
3433elpwid 3973 . . . . . . . . . . 11  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( g `  y )  C_  A
)
352isf34lem1 8833 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( g `  y
)  C_  A )  ->  ( F `  (
g `  y )
)  =  ( A 
\  ( g `  y ) ) )
3632, 34, 35syl2anc 671 . . . . . . . . . 10  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( F `  ( g `  y
) )  =  ( A  \  ( g `
 y ) ) )
37 peano2 6745 . . . . . . . . . . . . 13  |-  ( y  e.  om  ->  suc  y  e.  om )
38 ffvelrn 6048 . . . . . . . . . . . . 13  |-  ( ( g : om --> ~P A  /\  suc  y  e.  om )  ->  ( g `  suc  y )  e.  ~P A )
3913, 37, 38syl2an 484 . . . . . . . . . . . 12  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( g `  suc  y )  e.  ~P A )
4039elpwid 3973 . . . . . . . . . . 11  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( g `  suc  y )  C_  A
)
412isf34lem1 8833 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( g `  suc  y )  C_  A
)  ->  ( F `  ( g `  suc  y ) )  =  ( A  \  (
g `  suc  y ) ) )
4232, 40, 41syl2anc 671 . . . . . . . . . 10  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( F `  ( g `  suc  y ) )  =  ( A  \  (
g `  suc  y ) ) )
4336, 42sseq12d 3473 . . . . . . . . 9  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( F `
 ( g `  y ) )  C_  ( F `  ( g `
 suc  y )
)  <->  ( A  \ 
( g `  y
) )  C_  ( A  \  ( g `  suc  y ) ) ) )
4431, 43syl5ibr 229 . . . . . . . 8  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( g `
 suc  y )  C_  ( g `  y
)  ->  ( F `  ( g `  y
) )  C_  ( F `  ( g `  suc  y ) ) ) )
45 fvco3 5970 . . . . . . . . . 10  |-  ( ( g : om --> ~P A  /\  y  e.  om )  ->  ( ( F  o.  g ) `  y )  =  ( F `  ( g `
 y ) ) )
4613, 45sylan 478 . . . . . . . . 9  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( F  o.  g ) `  y )  =  ( F `  ( g `
 y ) ) )
47 fvco3 5970 . . . . . . . . . 10  |-  ( ( g : om --> ~P A  /\  suc  y  e.  om )  ->  ( ( F  o.  g ) `  suc  y )  =  ( F `  ( g `
 suc  y )
) )
4813, 37, 47syl2an 484 . . . . . . . . 9  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( F  o.  g ) `  suc  y )  =  ( F `  ( g `
 suc  y )
) )
4946, 48sseq12d 3473 . . . . . . . 8  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( ( F  o.  g ) `
 y )  C_  ( ( F  o.  g ) `  suc  y )  <->  ( F `  ( g `  y
) )  C_  ( F `  ( g `  suc  y ) ) ) )
5044, 49sylibrd 242 . . . . . . 7  |-  ( ( g  e.  ( ~P A  ^m  om )  /\  y  e.  om )  ->  ( ( g `
 suc  y )  C_  ( g `  y
)  ->  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y ) ) )
5150ralimdva 2808 . . . . . 6  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( A. y  e.  om  ( g `  suc  y )  C_  (
g `  y )  ->  A. y  e.  om  ( ( F  o.  g ) `  y
)  C_  ( ( F  o.  g ) `  suc  y ) ) )
52 ffn 5755 . . . . . . . . 9  |-  ( F : ~P A --> ~P A  ->  F  Fn  ~P A
)
5312, 52syl 17 . . . . . . . 8  |-  ( g  e.  ( ~P A  ^m  om )  ->  F  Fn  ~P A )
54 imassrn 5201 . . . . . . . . 9  |-  ( F
" ran  g )  C_ 
ran  F
55 frn 5762 . . . . . . . . . 10  |-  ( F : ~P A --> ~P A  ->  ran  F  C_  ~P A )
5612, 55syl 17 . . . . . . . . 9  |-  ( g  e.  ( ~P A  ^m  om )  ->  ran  F 
C_  ~P A )
5754, 56syl5ss 3455 . . . . . . . 8  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F " ran  g ) 
C_  ~P A )
58 fnfvima 6173 . . . . . . . . 9  |-  ( ( F  Fn  ~P A  /\  ( F " ran  g )  C_  ~P A  /\  U. ( F
" ran  g )  e.  ( F " ran  g ) )  -> 
( F `  U. ( F " ran  g
) )  e.  ( F " ( F
" ran  g )
) )
59583expia 1217 . . . . . . . 8  |-  ( ( F  Fn  ~P A  /\  ( F " ran  g )  C_  ~P A )  ->  ( U. ( F " ran  g )  e.  ( F " ran  g
)  ->  ( F `  U. ( F " ran  g ) )  e.  ( F " ( F " ran  g ) ) ) )
6053, 57, 59syl2anc 671 . . . . . . 7  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( U. ( F " ran  g )  e.  ( F " ran  g
)  ->  ( F `  U. ( F " ran  g ) )  e.  ( F " ( F " ran  g ) ) ) )
61 incom 3637 . . . . . . . . . . . . 13  |-  ( dom 
F  i^i  ran  g )  =  ( ran  g  i^i  dom  F )
62 frn 5762 . . . . . . . . . . . . . . . 16  |-  ( g : om --> ~P A  ->  ran  g  C_  ~P A )
6313, 62syl 17 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( ~P A  ^m  om )  ->  ran  g  C_  ~P A )
64 fdm 5760 . . . . . . . . . . . . . . . 16  |-  ( F : ~P A --> ~P A  ->  dom  F  =  ~P A )
6512, 64syl 17 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( ~P A  ^m  om )  ->  dom  F  =  ~P A )
6663, 65sseqtr4d 3481 . . . . . . . . . . . . . 14  |-  ( g  e.  ( ~P A  ^m  om )  ->  ran  g  C_  dom  F )
67 df-ss 3430 . . . . . . . . . . . . . 14  |-  ( ran  g  C_  dom  F  <->  ( ran  g  i^i  dom  F )  =  ran  g )
6866, 67sylib 201 . . . . . . . . . . . . 13  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( ran  g  i^i  dom  F
)  =  ran  g
)
6961, 68syl5eq 2508 . . . . . . . . . . . 12  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( dom  F  i^i  ran  g
)  =  ran  g
)
70 fdm 5760 . . . . . . . . . . . . . . 15  |-  ( g : om --> ~P A  ->  dom  g  =  om )
7113, 70syl 17 . . . . . . . . . . . . . 14  |-  ( g  e.  ( ~P A  ^m  om )  ->  dom  g  =  om )
72 peano1 6744 . . . . . . . . . . . . . . 15  |-  (/)  e.  om
73 ne0i 3749 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  om  ->  om  =/=  (/) )
7472, 73mp1i 13 . . . . . . . . . . . . . 14  |-  ( g  e.  ( ~P A  ^m  om )  ->  om  =/=  (/) )
7571, 74eqnetrd 2703 . . . . . . . . . . . . 13  |-  ( g  e.  ( ~P A  ^m  om )  ->  dom  g  =/=  (/) )
76 dm0rn0 5073 . . . . . . . . . . . . . 14  |-  ( dom  g  =  (/)  <->  ran  g  =  (/) )
7776necon3bii 2688 . . . . . . . . . . . . 13  |-  ( dom  g  =/=  (/)  <->  ran  g  =/=  (/) )
7875, 77sylib 201 . . . . . . . . . . . 12  |-  ( g  e.  ( ~P A  ^m  om )  ->  ran  g  =/=  (/) )
7969, 78eqnetrd 2703 . . . . . . . . . . 11  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( dom  F  i^i  ran  g
)  =/=  (/) )
80 imadisj 5209 . . . . . . . . . . . 12  |-  ( ( F " ran  g
)  =  (/)  <->  ( dom  F  i^i  ran  g )  =  (/) )
8180necon3bii 2688 . . . . . . . . . . 11  |-  ( ( F " ran  g
)  =/=  (/)  <->  ( dom  F  i^i  ran  g )  =/=  (/) )
8279, 81sylibr 217 . . . . . . . . . 10  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F " ran  g )  =/=  (/) )
832isf34lem4 8838 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( ( F " ran  g )  C_  ~P A  /\  ( F " ran  g )  =/=  (/) ) )  ->  ( F `  U. ( F " ran  g ) )  = 
|^| ( F "
( F " ran  g ) ) )
8410, 57, 82, 83syl12anc 1274 . . . . . . . . 9  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F `  U. ( F
" ran  g )
)  =  |^| ( F " ( F " ran  g ) ) )
852isf34lem3 8836 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ran  g  C_  ~P A
)  ->  ( F " ( F " ran  g ) )  =  ran  g )
8610, 63, 85syl2anc 671 . . . . . . . . . 10  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F " ( F " ran  g ) )  =  ran  g )
8786inteqd 4253 . . . . . . . . 9  |-  ( g  e.  ( ~P A  ^m  om )  ->  |^| ( F " ( F " ran  g ) )  = 
|^| ran  g )
8884, 87eqtrd 2496 . . . . . . . 8  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( F `  U. ( F
" ran  g )
)  =  |^| ran  g )
8988, 86eleq12d 2534 . . . . . . 7  |-  ( g  e.  ( ~P A  ^m  om )  ->  (
( F `  U. ( F " ran  g
) )  e.  ( F " ( F
" ran  g )
)  <->  |^| ran  g  e. 
ran  g ) )
9060, 89sylibd 222 . . . . . 6  |-  ( g  e.  ( ~P A  ^m  om )  ->  ( U. ( F " ran  g )  e.  ( F " ran  g
)  ->  |^| ran  g  e.  ran  g ) )
9151, 90imim12d 77 . . . . 5  |-  ( g  e.  ( ~P A  ^m  om )  ->  (
( A. y  e. 
om  ( ( F  o.  g ) `  y )  C_  (
( F  o.  g
) `  suc  y )  ->  U. ( F " ran  g )  e.  ( F " ran  g
) )  ->  ( A. y  e.  om  ( g `  suc  y )  C_  (
g `  y )  ->  |^| ran  g  e. 
ran  g ) ) )
9230, 91sylcom 30 . . . 4  |-  ( A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  ->  U. ran  f  e.  ran  f )  ->  (
g  e.  ( ~P A  ^m  om )  ->  ( A. y  e. 
om  ( g `  suc  y )  C_  (
g `  y )  ->  |^| ran  g  e. 
ran  g ) ) )
9392ralrimiv 2812 . . 3  |-  ( A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y
)  C_  ( f `  suc  y )  ->  U. ran  f  e.  ran  f )  ->  A. g  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( g `  suc  y )  C_  (
g `  y )  ->  |^| ran  g  e. 
ran  g ) )
94 isfin3-3 8829 . . 3  |-  ( A  e.  V  ->  ( A  e. FinIII 
<-> 
A. g  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( g `  suc  y )  C_  (
g `  y )  ->  |^| ran  g  e. 
ran  g ) ) )
9593, 94syl5ibr 229 . 2  |-  ( A  e.  V  ->  ( A. f  e.  ( ~P A  ^m  om )
( A. y  e. 
om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f )  ->  A  e. FinIII ) )
966, 95impbid2 209 1  |-  ( A  e.  V  ->  ( A  e. FinIII 
<-> 
A. f  e.  ( ~P A  ^m  om ) ( A. y  e.  om  ( f `  y )  C_  (
f `  suc  y )  ->  U. ran  f  e. 
ran  f ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898    =/= wne 2633   A.wral 2749   _Vcvv 3057    \ cdif 3413    i^i cin 3415    C_ wss 3416   (/)c0 3743   ~Pcpw 3963   U.cuni 4212   |^|cint 4248    |-> cmpt 4477   dom cdm 4856   ran crn 4857   "cima 4859    o. ccom 4860   suc csuc 5448    Fn wfn 5600   -->wf 5601   ` cfv 5605  (class class class)co 6320   omcom 6724    ^m cmap 7503  FinIIIcfin3 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-rep 4531  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rmo 2757  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-se 4816  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-isom 5614  df-riota 6282  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-rpss 6603  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-seqom 7196  df-1o 7213  df-oadd 7217  df-er 7394  df-map 7505  df-en 7601  df-dom 7602  df-sdom 7603  df-fin 7604  df-wdom 8105  df-card 8404  df-fin4 8748  df-fin3 8749
This theorem is referenced by:  isfin3-4  8843
  Copyright terms: Public domain W3C validator