MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem5 Structured version   Unicode version

Theorem isf34lem5 8759
Description: Lemma for isfin3-4 8763. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  |^| X )  =  U. ( F " X ) )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem isf34lem5
StepHypRef Expression
1 imassrn 5348 . . . . . . 7  |-  ( F
" X )  C_  ran  F
2 compss.a . . . . . . . . . 10  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
32isf34lem2 8754 . . . . . . . . 9  |-  ( A  e.  V  ->  F : ~P A --> ~P A
)
43adantr 465 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  F : ~P A
--> ~P A )
5 frn 5737 . . . . . . . 8  |-  ( F : ~P A --> ~P A  ->  ran  F  C_  ~P A )
64, 5syl 16 . . . . . . 7  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ran  F  C_  ~P A )
71, 6syl5ss 3515 . . . . . 6  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F " X )  C_  ~P A )
8 simprl 755 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  X  C_  ~P A )
9 fdm 5735 . . . . . . . . . . 11  |-  ( F : ~P A --> ~P A  ->  dom  F  =  ~P A )
104, 9syl 16 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  dom  F  =  ~P A )
118, 10sseqtr4d 3541 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  X  C_  dom  F )
12 dfss1 3703 . . . . . . . . 9  |-  ( X 
C_  dom  F  <->  ( dom  F  i^i  X )  =  X )
1311, 12sylib 196 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( dom  F  i^i  X )  =  X )
14 simprr 756 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  X  =/=  (/) )
1513, 14eqnetrd 2760 . . . . . . 7  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( dom  F  i^i  X )  =/=  (/) )
16 imadisj 5356 . . . . . . . 8  |-  ( ( F " X )  =  (/)  <->  ( dom  F  i^i  X )  =  (/) )
1716necon3bii 2735 . . . . . . 7  |-  ( ( F " X )  =/=  (/)  <->  ( dom  F  i^i  X )  =/=  (/) )
1815, 17sylibr 212 . . . . . 6  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F " X )  =/=  (/) )
197, 18jca 532 . . . . 5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( ( F
" X )  C_  ~P A  /\  ( F " X )  =/=  (/) ) )
202isf34lem4 8758 . . . . 5  |-  ( ( A  e.  V  /\  ( ( F " X )  C_  ~P A  /\  ( F " X )  =/=  (/) ) )  ->  ( F `  U. ( F " X
) )  =  |^| ( F " ( F
" X ) ) )
2119, 20syldan 470 . . . 4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. ( F " X
) )  =  |^| ( F " ( F
" X ) ) )
222isf34lem3 8756 . . . . . 6  |-  ( ( A  e.  V  /\  X  C_  ~P A )  ->  ( F "
( F " X
) )  =  X )
2322adantrr 716 . . . . 5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F "
( F " X
) )  =  X )
2423inteqd 4287 . . . 4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  |^| ( F "
( F " X
) )  =  |^| X )
2521, 24eqtrd 2508 . . 3  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  U. ( F " X
) )  =  |^| X )
2625fveq2d 5870 . 2  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  ( F `  U. ( F " X ) ) )  =  ( F `
 |^| X ) )
272compsscnv 8752 . . . 4  |-  `' F  =  F
2827fveq1i 5867 . . 3  |-  ( `' F `  ( F `
 U. ( F
" X ) ) )  =  ( F `
 ( F `  U. ( F " X
) ) )
292compssiso 8755 . . . . . 6  |-  ( A  e.  V  ->  F  Isom [ C.]  ,  `' [ C.]  ( ~P A ,  ~P A ) )
30 isof1o 6210 . . . . . 6  |-  ( F 
Isom [ C.]  ,  `' [ C.]  ( ~P A ,  ~P A )  ->  F : ~P A -1-1-onto-> ~P A )
3129, 30syl 16 . . . . 5  |-  ( A  e.  V  ->  F : ~P A -1-1-onto-> ~P A )
3231adantr 465 . . . 4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  F : ~P A
-1-1-onto-> ~P A )
33 sspwuni 4411 . . . . . 6  |-  ( ( F " X ) 
C_  ~P A  <->  U. ( F " X )  C_  A )
347, 33sylib 196 . . . . 5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  U. ( F " X )  C_  A
)
35 elpw2g 4610 . . . . . 6  |-  ( A  e.  V  ->  ( U. ( F " X
)  e.  ~P A  <->  U. ( F " X
)  C_  A )
)
3635adantr 465 . . . . 5  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( U. ( F " X )  e. 
~P A  <->  U. ( F " X )  C_  A ) )
3734, 36mpbird 232 . . . 4  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  U. ( F " X )  e.  ~P A )
38 f1ocnvfv1 6171 . . . 4  |-  ( ( F : ~P A -1-1-onto-> ~P A  /\  U. ( F
" X )  e. 
~P A )  -> 
( `' F `  ( F `  U. ( F " X ) ) )  =  U. ( F " X ) )
3932, 37, 38syl2anc 661 . . 3  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( `' F `  ( F `  U. ( F " X ) ) )  =  U. ( F " X ) )
4028, 39syl5eqr 2522 . 2  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  ( F `  U. ( F " X ) ) )  =  U. ( F " X ) )
4126, 40eqtr3d 2510 1  |-  ( ( A  e.  V  /\  ( X  C_  ~P A  /\  X  =/=  (/) ) )  ->  ( F `  |^| X )  =  U. ( F " X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662    \ cdif 3473    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245   |^|cint 4282    |-> cmpt 4505   `'ccnv 4998   dom cdm 4999   ran crn 5000   "cima 5002   -->wf 5584   -1-1-onto->wf1o 5587   ` cfv 5588    Isom wiso 5589   [ C.] crpss 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-int 4283  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-rpss 6565
This theorem is referenced by:  isf34lem7  8760
  Copyright terms: Public domain W3C validator