MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem1 Structured version   Unicode version

Theorem isf34lem1 8656
Description: Lemma for isfin3-4 8666. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
compss.a  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
Assertion
Ref Expression
isf34lem1  |-  ( ( A  e.  V  /\  X  C_  A )  -> 
( F `  X
)  =  ( A 
\  X ) )
Distinct variable groups:    x, A    x, V
Allowed substitution hints:    F( x)    X( x)

Proof of Theorem isf34lem1
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elpw2g 4566 . . 3  |-  ( A  e.  V  ->  ( X  e.  ~P A  <->  X 
C_  A ) )
21biimpar 485 . 2  |-  ( ( A  e.  V  /\  X  C_  A )  ->  X  e.  ~P A
)
3 difexg 4551 . . 3  |-  ( A  e.  V  ->  ( A  \  X )  e. 
_V )
43adantr 465 . 2  |-  ( ( A  e.  V  /\  X  C_  A )  -> 
( A  \  X
)  e.  _V )
5 difeq2 3579 . . 3  |-  ( a  =  X  ->  ( A  \  a )  =  ( A  \  X
) )
6 compss.a . . . 4  |-  F  =  ( x  e.  ~P A  |->  ( A  \  x ) )
7 difeq2 3579 . . . . 5  |-  ( x  =  a  ->  ( A  \  x )  =  ( A  \  a
) )
87cbvmptv 4494 . . . 4  |-  ( x  e.  ~P A  |->  ( A  \  x ) )  =  ( a  e.  ~P A  |->  ( A  \  a ) )
96, 8eqtri 2483 . . 3  |-  F  =  ( a  e.  ~P A  |->  ( A  \ 
a ) )
105, 9fvmptg 5884 . 2  |-  ( ( X  e.  ~P A  /\  ( A  \  X
)  e.  _V )  ->  ( F `  X
)  =  ( A 
\  X ) )
112, 4, 10syl2anc 661 1  |-  ( ( A  e.  V  /\  X  C_  A )  -> 
( F `  X
)  =  ( A 
\  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078    \ cdif 3436    C_ wss 3439   ~Pcpw 3971    |-> cmpt 4461   ` cfv 5529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-iota 5492  df-fun 5531  df-fv 5537
This theorem is referenced by:  compssiso  8658  isf34lem4  8661  isf34lem7  8663  isf34lem6  8664
  Copyright terms: Public domain W3C validator