MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem8 Structured version   Unicode version

Theorem isf32lem8 8752
Description: Lemma for isfin3-2 8759. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
isf32lem.e  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
isf32lem.f  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
Assertion
Ref Expression
isf32lem8  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Distinct variable groups:    x, w    v, u, w, x, y,
ph    w, A, x, y   
w, F, x, y   
u, S, v, w, x, y    w, J, x, y    x, K, y
Allowed substitution hints:    A( v, u)    F( v, u)    G( x, y, w, v, u)    J( v, u)    K( w, v, u)

Proof of Theorem isf32lem8
StepHypRef Expression
1 isf32lem.f . . . 4  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
21fveq1i 5873 . . 3  |-  ( K `
 A )  =  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )
3 isf32lem.d . . . . . . . 8  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
4 ssrab2 3590 . . . . . . . 8  |-  { y  e.  om  |  ( F `  suc  y
)  C.  ( F `  y ) }  C_  om
53, 4eqsstri 3539 . . . . . . 7  |-  S  C_  om
6 isf32lem.a . . . . . . . 8  |-  ( ph  ->  F : om --> ~P G
)
7 isf32lem.b . . . . . . . 8  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
8 isf32lem.c . . . . . . . 8  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
96, 7, 8, 3isf32lem5 8749 . . . . . . 7  |-  ( ph  ->  -.  S  e.  Fin )
10 isf32lem.e . . . . . . . 8  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
1110fin23lem22 8719 . . . . . . 7  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  J : om -1-1-onto-> S )
125, 9, 11sylancr 663 . . . . . 6  |-  ( ph  ->  J : om -1-1-onto-> S )
13 f1of 5822 . . . . . 6  |-  ( J : om -1-1-onto-> S  ->  J : om
--> S )
1412, 13syl 16 . . . . 5  |-  ( ph  ->  J : om --> S )
15 fvco3 5951 . . . . 5  |-  ( ( J : om --> S  /\  A  e.  om )  ->  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
) )
1614, 15sylan 471 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) ) `
 ( J `  A ) ) )
1714ffvelrnda 6032 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  S
)
18 fveq2 5872 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  w )  =  ( F `  ( J `  A ) ) )
19 suceq 4949 . . . . . . . 8  |-  ( w  =  ( J `  A )  ->  suc  w  =  suc  ( J `
 A ) )
2019fveq2d 5876 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  suc  w )  =  ( F `  suc  ( J `  A
) ) )
2118, 20difeq12d 3628 . . . . . 6  |-  ( w  =  ( J `  A )  ->  (
( F `  w
)  \  ( F `  suc  w ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
22 eqid 2467 . . . . . 6  |-  ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  =  ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )
23 fvex 5882 . . . . . . 7  |-  ( F `
 ( J `  A ) )  e. 
_V
24 difexg 4601 . . . . . . 7  |-  ( ( F `  ( J `
 A ) )  e.  _V  ->  (
( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) )  e.  _V )
2523, 24ax-mp 5 . . . . . 6  |-  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) )  e. 
_V
2621, 22, 25fvmpt 5957 . . . . 5  |-  ( ( J `  A )  e.  S  ->  (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
)  =  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) ) )
2717, 26syl 16 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
w  e.  S  |->  ( ( F `  w
)  \  ( F `  suc  w ) ) ) `  ( J `
 A ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
2816, 27eqtrd 2508 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
292, 28syl5eq 2520 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  =  ( ( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) ) )
306adantr 465 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  F : om
--> ~P G )
315, 17sseldi 3507 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  om )
3230, 31ffvelrnd 6033 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  e.  ~P G )
3332elpwid 4026 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  C_  G
)
3433ssdifssd 3647 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( ( F `  ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) )  C_  G
)
3529, 34eqsstrd 3543 1  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   {crab 2821   _Vcvv 3118    \ cdif 3478    i^i cin 3480    C_ wss 3481    C. wpss 3482   ~Pcpw 4016   |^|cint 4288   class class class wbr 4453    |-> cmpt 4511   suc csuc 4886   ran crn 5006    o. ccom 5009   -->wf 5590   -1-1-onto->wf1o 5593   ` cfv 5594   iota_crio 6255   omcom 6695    ~~ cen 7525   Fincfn 7528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-om 6696  df-recs 7054  df-1o 7142  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-card 8332
This theorem is referenced by:  isf32lem9  8753
  Copyright terms: Public domain W3C validator