MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem8 Structured version   Unicode version

Theorem isf32lem8 8803
Description: Lemma for isfin3-2 8810. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
isf32lem.e  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
isf32lem.f  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
Assertion
Ref Expression
isf32lem8  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Distinct variable groups:    x, w    v, u, w, x, y,
ph    w, A, x, y   
w, F, x, y   
u, S, v, w, x, y    w, J, x, y    x, K, y
Allowed substitution hints:    A( v, u)    F( v, u)    G( x, y, w, v, u)    J( v, u)    K( w, v, u)

Proof of Theorem isf32lem8
StepHypRef Expression
1 isf32lem.f . . . 4  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
21fveq1i 5888 . . 3  |-  ( K `
 A )  =  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )
3 isf32lem.d . . . . . . . 8  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
4 ssrab2 3552 . . . . . . . 8  |-  { y  e.  om  |  ( F `  suc  y
)  C.  ( F `  y ) }  C_  om
53, 4eqsstri 3500 . . . . . . 7  |-  S  C_  om
6 isf32lem.a . . . . . . . 8  |-  ( ph  ->  F : om --> ~P G
)
7 isf32lem.b . . . . . . . 8  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
8 isf32lem.c . . . . . . . 8  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
96, 7, 8, 3isf32lem5 8800 . . . . . . 7  |-  ( ph  ->  -.  S  e.  Fin )
10 isf32lem.e . . . . . . . 8  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S  ( v  i^i  S
)  ~~  u )
)
1110fin23lem22 8770 . . . . . . 7  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  J : om -1-1-onto-> S )
125, 9, 11sylancr 668 . . . . . 6  |-  ( ph  ->  J : om -1-1-onto-> S )
13 f1of 5837 . . . . . 6  |-  ( J : om -1-1-onto-> S  ->  J : om
--> S )
1412, 13syl 17 . . . . 5  |-  ( ph  ->  J : om --> S )
15 fvco3 5964 . . . . 5  |-  ( ( J : om --> S  /\  A  e.  om )  ->  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
) )
1614, 15sylan 474 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) ) `
 ( J `  A ) ) )
1714ffvelrnda 6043 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  S
)
18 fveq2 5887 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  w )  =  ( F `  ( J `  A ) ) )
19 suceq 5513 . . . . . . . 8  |-  ( w  =  ( J `  A )  ->  suc  w  =  suc  ( J `
 A ) )
2019fveq2d 5891 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  suc  w )  =  ( F `  suc  ( J `  A
) ) )
2118, 20difeq12d 3590 . . . . . 6  |-  ( w  =  ( J `  A )  ->  (
( F `  w
)  \  ( F `  suc  w ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
22 eqid 2423 . . . . . 6  |-  ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  =  ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )
23 fvex 5897 . . . . . . 7  |-  ( F `
 ( J `  A ) )  e. 
_V
24 difexg 4578 . . . . . . 7  |-  ( ( F `  ( J `
 A ) )  e.  _V  ->  (
( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) )  e.  _V )
2523, 24ax-mp 5 . . . . . 6  |-  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) )  e. 
_V
2621, 22, 25fvmpt 5970 . . . . 5  |-  ( ( J `  A )  e.  S  ->  (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
)  =  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) ) )
2717, 26syl 17 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
w  e.  S  |->  ( ( F `  w
)  \  ( F `  suc  w ) ) ) `  ( J `
 A ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
2816, 27eqtrd 2464 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
292, 28syl5eq 2476 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  =  ( ( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) ) )
306adantr 467 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  F : om
--> ~P G )
315, 17sseldi 3468 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  om )
3230, 31ffvelrnd 6044 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  e.  ~P G )
3332elpwid 3997 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  C_  G
)
3433ssdifssd 3609 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( ( F `  ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) )  C_  G
)
3529, 34eqsstrd 3504 1  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1438    e. wcel 1873   A.wral 2776   {crab 2780   _Vcvv 3085    \ cdif 3439    i^i cin 3441    C_ wss 3442    C. wpss 3443   ~Pcpw 3987   |^|cint 4261   class class class wbr 4429    |-> cmpt 4488   ran crn 4860    o. ccom 4863   suc csuc 5450   -->wf 5603   -1-1-onto->wf1o 5606   ` cfv 5607   iota_crio 6272   omcom 6712    ~~ cen 7583   Fincfn 7586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1664  ax-4 1677  ax-5 1753  ax-6 1799  ax-7 1844  ax-8 1875  ax-9 1877  ax-10 1892  ax-11 1897  ax-12 1910  ax-13 2058  ax-ext 2402  ax-rep 4542  ax-sep 4552  ax-nul 4561  ax-pow 4608  ax-pr 4666  ax-un 6603
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1659  df-nf 1663  df-sb 1792  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3087  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3918  df-pw 3989  df-sn 4005  df-pr 4007  df-tp 4009  df-op 4011  df-uni 4226  df-int 4262  df-iun 4307  df-br 4430  df-opab 4489  df-mpt 4490  df-tr 4525  df-eprel 4770  df-id 4774  df-po 4780  df-so 4781  df-fr 4818  df-se 4819  df-we 4820  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-pred 5405  df-ord 5451  df-on 5452  df-lim 5453  df-suc 5454  df-iota 5571  df-fun 5609  df-fn 5610  df-f 5611  df-f1 5612  df-fo 5613  df-f1o 5614  df-fv 5615  df-isom 5616  df-riota 6273  df-om 6713  df-wrecs 7045  df-recs 7107  df-1o 7199  df-er 7380  df-en 7587  df-dom 7588  df-sdom 7589  df-fin 7590  df-card 8387
This theorem is referenced by:  isf32lem9  8804
  Copyright terms: Public domain W3C validator