MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem4 Structured version   Unicode version

Theorem isf32lem4 8524
Description: Lemma for isfin3-2 8535. Being a chain, difference sets are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
Assertion
Ref Expression
isf32lem4  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
Distinct variable groups:    x, B    ph, x    x, A    x, F
Allowed substitution hint:    G( x)

Proof of Theorem isf32lem4
StepHypRef Expression
1 simplrr 760 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  B  e.  om )
2 simplrl 759 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  A  e.  om )
3 simpr 461 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  A  e.  B )
4 simplll 757 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  ph )
5 incom 3542 . . . 4  |-  ( ( ( F `  A
)  \  ( F `  suc  A ) )  i^i  ( ( F `
 B )  \ 
( F `  suc  B ) ) )  =  ( ( ( F `
 B )  \ 
( F `  suc  B ) )  i^i  (
( F `  A
)  \  ( F `  suc  A ) ) )
6 isf32lem.a . . . . 5  |-  ( ph  ->  F : om --> ~P G
)
7 isf32lem.b . . . . 5  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
8 isf32lem.c . . . . 5  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
96, 7, 8isf32lem3 8523 . . . 4  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  ( A  e.  B  /\  ph ) )  -> 
( ( ( F `
 B )  \ 
( F `  suc  B ) )  i^i  (
( F `  A
)  \  ( F `  suc  A ) ) )  =  (/) )
105, 9syl5eq 2486 . . 3  |-  ( ( ( B  e.  om  /\  A  e.  om )  /\  ( A  e.  B  /\  ph ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
111, 2, 3, 4, 10syl22anc 1219 . 2  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  A  e.  B )  ->  (
( ( F `  A )  \  ( F `  suc  A ) )  i^i  ( ( F `  B ) 
\  ( F `  suc  B ) ) )  =  (/) )
12 simplrl 759 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  A  e.  om )
13 simplrr 760 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  B  e.  om )
14 simpr 461 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  B  e.  A )
15 simplll 757 . . 3  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  ph )
166, 7, 8isf32lem3 8523 . . 3  |-  ( ( ( A  e.  om  /\  B  e.  om )  /\  ( B  e.  A  /\  ph ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
1712, 13, 14, 15, 16syl22anc 1219 . 2  |-  ( ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om )
)  /\  B  e.  A )  ->  (
( ( F `  A )  \  ( F `  suc  A ) )  i^i  ( ( F `  B ) 
\  ( F `  suc  B ) ) )  =  (/) )
18 simplr 754 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  ->  A  =/=  B )
19 nnord 6483 . . . . . 6  |-  ( A  e.  om  ->  Ord  A )
20 nnord 6483 . . . . . 6  |-  ( B  e.  om  ->  Ord  B )
21 ordtri3 4754 . . . . . 6  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A ) ) )
2219, 20, 21syl2an 477 . . . . 5  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A
) ) )
2322adantl 466 . . . 4  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( A  =  B  <->  -.  ( A  e.  B  \/  B  e.  A
) ) )
2423necon2abid 2667 . . 3  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( A  e.  B  \/  B  e.  A )  <->  A  =/=  B ) )
2518, 24mpbird 232 . 2  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( A  e.  B  \/  B  e.  A
) )
2611, 17, 25mpjaodan 784 1  |-  ( ( ( ph  /\  A  =/=  B )  /\  ( A  e.  om  /\  B  e.  om ) )  -> 
( ( ( F `
 A )  \ 
( F `  suc  A ) )  i^i  (
( F `  B
)  \  ( F `  suc  B ) ) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2605   A.wral 2714    \ cdif 3324    i^i cin 3326    C_ wss 3327   (/)c0 3636   ~Pcpw 3859   |^|cint 4127   Ord word 4717   suc csuc 4720   ran crn 4840   -->wf 5413   ` cfv 5417   omcom 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-tr 4385  df-eprel 4631  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-iota 5380  df-fv 5425  df-om 6476
This theorem is referenced by:  isf32lem7  8527
  Copyright terms: Public domain W3C validator