MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isexid Structured version   Unicode version

Theorem isexid 25142
Description: The predicate  G has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
isexid.1  |-  X  =  dom  dom  G
Assertion
Ref Expression
isexid  |-  ( G  e.  A  ->  ( G  e.  ExId  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
Distinct variable groups:    x, G, y    x, X, y
Allowed substitution hints:    A( x, y)

Proof of Theorem isexid
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dmeq 5209 . . . . 5  |-  ( g  =  G  ->  dom  g  =  dom  G )
21dmeqd 5211 . . . 4  |-  ( g  =  G  ->  dom  dom  g  =  dom  dom  G )
3 isexid.1 . . . 4  |-  X  =  dom  dom  G
42, 3syl6eqr 2526 . . 3  |-  ( g  =  G  ->  dom  dom  g  =  X )
5 oveq 6301 . . . . . 6  |-  ( g  =  G  ->  (
x g y )  =  ( x G y ) )
65eqeq1d 2469 . . . . 5  |-  ( g  =  G  ->  (
( x g y )  =  y  <->  ( x G y )  =  y ) )
7 oveq 6301 . . . . . 6  |-  ( g  =  G  ->  (
y g x )  =  ( y G x ) )
87eqeq1d 2469 . . . . 5  |-  ( g  =  G  ->  (
( y g x )  =  y  <->  ( y G x )  =  y ) )
96, 8anbi12d 710 . . . 4  |-  ( g  =  G  ->  (
( ( x g y )  =  y  /\  ( y g x )  =  y )  <->  ( ( x G y )  =  y  /\  ( y G x )  =  y ) ) )
104, 9raleqbidv 3077 . . 3  |-  ( g  =  G  ->  ( A. y  e.  dom  dom  g ( ( x g y )  =  y  /\  ( y g x )  =  y )  <->  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
114, 10rexeqbidv 3078 . 2  |-  ( g  =  G  ->  ( E. x  e.  dom  dom  g A. y  e. 
dom  dom  g ( ( x g y )  =  y  /\  (
y g x )  =  y )  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
12 df-exid 25140 . 2  |-  ExId  =  { g  |  E. x  e.  dom  dom  g A. y  e.  dom  dom  g ( ( x g y )  =  y  /\  ( y g x )  =  y ) }
1311, 12elab2g 3257 1  |-  ( G  e.  A  ->  ( G  e.  ExId  <->  E. x  e.  X  A. y  e.  X  ( (
x G y )  =  y  /\  (
y G x )  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   dom cdm 5005  (class class class)co 6295    ExId cexid 25139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-dm 5015  df-iota 5557  df-fv 5602  df-ov 6298  df-exid 25140
This theorem is referenced by:  opidonOLD  25147  isexid2  25150  ismndo  25168  exidres  30267
  Copyright terms: Public domain W3C validator