MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem3 Structured version   Unicode version

Theorem isercolllem3 13501
Description: Lemma for isercoll 13502. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
isercoll.0  |-  ( (
ph  /\  n  e.  ( Z  \  ran  G
) )  ->  ( F `  n )  =  0 )
isercoll.f  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
isercoll.h  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( F `  ( G `  k )
) )
Assertion
Ref Expression
isercolllem3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  (  seq M (  +  ,  F ) `  N
)  =  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )
Distinct variable groups:    k, n, F    k, N, n    ph, k, n    k, G, n    k, H, n    k, M, n   
n, Z
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem3
StepHypRef Expression
1 addid2 9780 . . 3  |-  ( n  e.  CC  ->  (
0  +  n )  =  n )
21adantl 466 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  CC )  ->  (
0  +  n )  =  n )
3 addid1 9777 . . 3  |-  ( n  e.  CC  ->  (
n  +  0 )  =  n )
43adantl 466 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  CC )  ->  (
n  +  0 )  =  n )
5 addcl 9591 . . 3  |-  ( ( n  e.  CC  /\  k  e.  CC )  ->  ( n  +  k )  e.  CC )
65adantl 466 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  ( n  e.  CC  /\  k  e.  CC ) )  -> 
( n  +  k )  e.  CC )
7 0cnd 9606 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  0  e.  CC )
8 cnvimass 5367 . . . . 5  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
9 isercoll.g . . . . . . 7  |-  ( ph  ->  G : NN --> Z )
109adantr 465 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
11 fdm 5741 . . . . . 6  |-  ( G : NN --> Z  ->  dom  G  =  NN )
1210, 11syl 16 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
138, 12syl5sseq 3547 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
14 isercoll.z . . . . 5  |-  Z  =  ( ZZ>= `  M )
15 isercoll.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
16 isercoll.i . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
1714, 15, 9, 16isercolllem1 13499 . . . 4  |-  ( (
ph  /\  ( `' G " ( M ... N ) )  C_  NN )  ->  ( G  |`  ( `' G "
( M ... N
) ) )  Isom  <  ,  <  ( ( `' G " ( M ... N ) ) ,  ( G "
( `' G "
( M ... N
) ) ) ) )
1813, 17syldan 470 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G  |`  ( `' G "
( M ... N
) ) )  Isom  <  ,  <  ( ( `' G " ( M ... N ) ) ,  ( G "
( `' G "
( M ... N
) ) ) ) )
1914, 15, 9, 16isercolllem2 13500 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
20 isoeq4 6219 . . . 4  |-  ( ( 1 ... ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )  =  ( `' G "
( M ... N
) )  ->  (
( G  |`  ( `' G " ( M ... N ) ) )  Isom  <  ,  <  ( ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) ,  ( G
" ( `' G " ( M ... N
) ) ) )  <-> 
( G  |`  ( `' G " ( M ... N ) ) )  Isom  <  ,  <  ( ( `' G "
( M ... N
) ) ,  ( G " ( `' G " ( M ... N ) ) ) ) ) )
2119, 20syl 16 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( G  |`  ( `' G " ( M ... N
) ) )  Isom  <  ,  <  ( ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) ,  ( G
" ( `' G " ( M ... N
) ) ) )  <-> 
( G  |`  ( `' G " ( M ... N ) ) )  Isom  <  ,  <  ( ( `' G "
( M ... N
) ) ,  ( G " ( `' G " ( M ... N ) ) ) ) ) )
2218, 21mpbird 232 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G  |`  ( `' G "
( M ... N
) ) )  Isom  <  ,  <  ( ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) ,  ( G
" ( `' G " ( M ... N
) ) ) ) )
238a1i 11 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  dom  G )
24 dfss1 3699 . . . . 5  |-  ( ( `' G " ( M ... N ) ) 
C_  dom  G  <->  ( dom  G  i^i  ( `' G " ( M ... N
) ) )  =  ( `' G "
( M ... N
) ) )
2523, 24sylib 196 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( dom  G  i^i  ( `' G " ( M ... N
) ) )  =  ( `' G "
( M ... N
) ) )
26 1nn 10567 . . . . . . 7  |-  1  e.  NN
2726a1i 11 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
28 ffvelrn 6030 . . . . . . . . . 10  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
299, 26, 28sylancl 662 . . . . . . . . 9  |-  ( ph  ->  ( G `  1
)  e.  Z )
3029, 14syl6eleq 2555 . . . . . . . 8  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
3130adantr 465 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
32 simpr 461 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
33 elfzuzb 11707 . . . . . . 7  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
3431, 32, 33sylanbrc 664 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
35 ffn 5737 . . . . . . 7  |-  ( G : NN --> Z  ->  G  Fn  NN )
36 elpreima 6008 . . . . . . 7  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
3710, 35, 363syl 20 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
3827, 34, 37mpbir2and 922 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
39 ne0i 3799 . . . . 5  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
4038, 39syl 16 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
4125, 40eqnetrd 2750 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( dom  G  i^i  ( `' G " ( M ... N
) ) )  =/=  (/) )
42 imadisj 5366 . . . 4  |-  ( ( G " ( `' G " ( M ... N ) ) )  =  (/)  <->  ( dom  G  i^i  ( `' G " ( M ... N
) ) )  =  (/) )
4342necon3bii 2725 . . 3  |-  ( ( G " ( `' G " ( M ... N ) ) )  =/=  (/)  <->  ( dom  G  i^i  ( `' G " ( M ... N
) ) )  =/=  (/) )
4441, 43sylibr 212 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =/=  (/) )
45 ffun 5739 . . . 4  |-  ( G : NN --> Z  ->  Fun  G )
46 funimacnv 5666 . . . 4  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
4710, 45, 463syl 20 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
48 inss1 3714 . . . 4  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
4948a1i 11 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  i^i 
ran  G )  C_  ( M ... N ) )
5047, 49eqsstrd 3533 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
51 simpl 457 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ph )
52 elfzuz 11709 . . . 4  |-  ( n  e.  ( M ... N )  ->  n  e.  ( ZZ>= `  M )
)
5352, 14syl6eleqr 2556 . . 3  |-  ( n  e.  ( M ... N )  ->  n  e.  Z )
54 isercoll.f . . 3  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
5551, 53, 54syl2an 477 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  ( M ... N
) )  ->  ( F `  n )  e.  CC )
5647difeq2d 3618 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  \ 
( G " ( `' G " ( M ... N ) ) ) )  =  ( ( M ... N
)  \  ( ( M ... N )  i^i 
ran  G ) ) )
57 difin 3742 . . . . . 6  |-  ( ( M ... N ) 
\  ( ( M ... N )  i^i 
ran  G ) )  =  ( ( M ... N )  \  ran  G )
5856, 57syl6eq 2514 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  \ 
( G " ( `' G " ( M ... N ) ) ) )  =  ( ( M ... N
)  \  ran  G ) )
5953ssriv 3503 . . . . . 6  |-  ( M ... N )  C_  Z
60 ssdif 3635 . . . . . 6  |-  ( ( M ... N ) 
C_  Z  ->  (
( M ... N
)  \  ran  G ) 
C_  ( Z  \  ran  G ) )
6159, 60mp1i 12 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  \  ran  G )  C_  ( Z  \  ran  G ) )
6258, 61eqsstrd 3533 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  \ 
( G " ( `' G " ( M ... N ) ) ) )  C_  ( Z  \  ran  G ) )
6362sselda 3499 . . 3  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  ( ( M ... N )  \  ( G " ( `' G " ( M ... N
) ) ) ) )  ->  n  e.  ( Z  \  ran  G
) )
64 isercoll.0 . . . 4  |-  ( (
ph  /\  n  e.  ( Z  \  ran  G
) )  ->  ( F `  n )  =  0 )
6564adantlr 714 . . 3  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  ( Z  \  ran  G ) )  ->  ( F `  n )  =  0 )
6663, 65syldan 470 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  n  e.  ( ( M ... N )  \  ( G " ( `' G " ( M ... N
) ) ) ) )  ->  ( F `  n )  =  0 )
67 elfznn 11739 . . . 4  |-  ( k  e.  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  ->  k  e.  NN )
68 isercoll.h . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( F `  ( G `  k )
) )
6951, 67, 68syl2an 477 . . 3  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )  ->  ( H `  k )  =  ( F `  ( G `  k ) ) )
7019eleq2d 2527 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) )  <->  k  e.  ( `' G " ( M ... N ) ) ) )
7170biimpa 484 . . . . 5  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )  ->  k  e.  ( `' G "
( M ... N
) ) )
72 fvres 5886 . . . . 5  |-  ( k  e.  ( `' G " ( M ... N
) )  ->  (
( G  |`  ( `' G " ( M ... N ) ) ) `  k )  =  ( G `  k ) )
7371, 72syl 16 . . . 4  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )  ->  (
( G  |`  ( `' G " ( M ... N ) ) ) `  k )  =  ( G `  k ) )
7473fveq2d 5876 . . 3  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )  ->  ( F `  ( ( G  |`  ( `' G " ( M ... N
) ) ) `  k ) )  =  ( F `  ( G `  k )
) )
7569, 74eqtr4d 2501 . 2  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  k  e.  ( 1 ... ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )  ->  ( H `  k )  =  ( F `  ( ( G  |`  ( `' G " ( M ... N ) ) ) `  k ) ) )
762, 4, 6, 7, 22, 44, 50, 55, 66, 75seqcoll2 12517 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  (  seq M (  +  ,  F ) `  N
)  =  (  seq 1 (  +  ,  H ) `  ( # `
 ( G "
( `' G "
( M ... N
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652    \ cdif 3468    i^i cin 3470    C_ wss 3471   (/)c0 3793   class class class wbr 4456   `'ccnv 5007   dom cdm 5008   ran crn 5009    |` cres 5010   "cima 5011   Fun wfun 5588    Fn wfn 5589   -->wf 5590   ` cfv 5594    Isom wiso 5595  (class class class)co 6296   CCcc 9507   0cc0 9509   1c1 9510    + caddc 9512    < clt 9645   NNcn 10556   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697    seqcseq 12110   #chash 12408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-seq 12111  df-hash 12409
This theorem is referenced by:  isercoll  13502
  Copyright terms: Public domain W3C validator