MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Unicode version

Theorem isercolllem2 13722
Description: Lemma for isercoll 13724. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Distinct variable groups:    k, N    ph, k    k, G    k, M
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 11830 . . . . . . . 8  |-  ( x  e.  ( 1 ...
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  x  e.  NN )
21a1i 11 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  ->  x  e.  NN )
)
3 cnvimass 5205 . . . . . . . . 9  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
4 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
54adantr 467 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
6 fdm 5748 . . . . . . . . . 10  |-  ( G : NN --> Z  ->  dom  G  =  NN )
75, 6syl 17 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
83, 7syl5sseq 3513 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
98sseld 3464 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  e.  NN ) )
10 id 23 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN )
11 nnuz 11196 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2521 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
13 ltso 9716 . . . . . . . . . . . . . 14  |-  <  Or  RR
1413a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  <  Or  RR )
15 fzfid 12187 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... N )  e.  Fin )
16 ffun 5746 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  Fun  G )
17 funimacnv 5671 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
185, 16, 173syl 18 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
19 inss1 3683 . . . . . . . . . . . . . . . 16  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
2018, 19syl6eqss 3515 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
21 ssfi 7796 . . . . . . . . . . . . . . 15  |-  ( ( ( M ... N
)  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  C_  ( M ... N ) )  -> 
( G " ( `' G " ( M ... N ) ) )  e.  Fin )
2215, 20, 21syl2anc 666 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  e. 
Fin )
23 ssid 3484 . . . . . . . . . . . . . . . . . . . . 21  |-  NN  C_  NN
24 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
25 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  ZZ )
26 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
2724, 25, 4, 26isercolllem1 13721 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2823, 27mpan2 676 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
29 ffn 5744 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G : NN --> Z  ->  G  Fn  NN )
30 fnresdm 5701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
31 isoeq1 6223 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
324, 29, 30, 314syl 19 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3328, 32mpbid 214 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
34 isof1o 6229 . . . . . . . . . . . . . . . . . . 19  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
35 f1ocnv 5841 . . . . . . . . . . . . . . . . . . 19  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
36 f1ofun 5831 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
3733, 34, 35, 364syl 19 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' G )
38 df-f1 5604 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
394, 37, 38sylanbrc 669 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : NN -1-1-> Z
)
4039adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
-1-1-> Z )
41 nnex 10617 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
42 ssexg 4568 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' G "
( M ... N
) )  C_  NN  /\  NN  e.  _V )  ->  ( `' G "
( M ... N
) )  e.  _V )
438, 41, 42sylancl 667 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
_V )
44 f1imaeng 7634 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN -1-1-> Z  /\  ( `' G "
( M ... N
) )  C_  NN  /\  ( `' G "
( M ... N
) )  e.  _V )  ->  ( G "
( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4540, 8, 43, 44syl3anc 1265 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4645ensymd 7625 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) )
47 enfii 7793 . . . . . . . . . . . . . 14  |-  ( ( ( G " ( `' G " ( M ... N ) ) )  e.  Fin  /\  ( `' G " ( M ... N ) ) 
~~  ( G "
( `' G "
( M ... N
) ) ) )  ->  ( `' G " ( M ... N
) )  e.  Fin )
4822, 46, 47syl2anc 666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
Fin )
49 1nn 10622 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
51 ffvelrn 6033 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
524, 49, 51sylancl 667 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  1
)  e.  Z )
5352, 24syl6eleq 2521 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
5453adantr 467 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
55 simpr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
56 elfzuzb 11796 . . . . . . . . . . . . . . . 16  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
5754, 55, 56sylanbrc 669 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
585, 29syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G  Fn  NN )
59 elpreima 6015 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
6058, 59syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
6150, 57, 60mpbir2and 931 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
62 ne0i 3768 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
6361, 62syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
64 nnssre 10615 . . . . . . . . . . . . . 14  |-  NN  C_  RR
658, 64syl6ss 3477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  RR )
66 fisupcl 7989 . . . . . . . . . . . . 13  |-  ( (  <  Or  RR  /\  ( ( `' G " ( M ... N
) )  e.  Fin  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  ( `' G " ( M ... N ) ) 
C_  RR ) )  ->  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N
) ) )
6714, 48, 63, 65, 66syl13anc 1267 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) ) )
688, 67sseldd 3466 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN )
6968nnzd 11041 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ZZ )
70 elfz5 11794 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ZZ )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
7112, 69, 70syl2anr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) ) )
72 elpreima 6015 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  NN  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7358, 72syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7467, 73mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
) ) )
7574simprd 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) )
76 elfzle2 11805 . . . . . . . . . . . . . . 15  |-  ( ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
)  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7775, 76syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7877adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
79 uzssz 11180 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  M )  C_  ZZ
8024, 79eqsstri 3495 . . . . . . . . . . . . . . . 16  |-  Z  C_  ZZ
81 zssre 10946 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8280, 81sstri 3474 . . . . . . . . . . . . . . 15  |-  Z  C_  RR
835ffvelrnda 6035 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
8482, 83sseldi 3463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  RR )
855, 68ffvelrnd 6036 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8685adantr 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8782, 86sseldi 3463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  RR )
88 eluzelz 11170 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  ( G `  1 )
)  ->  N  e.  ZZ )
8988ad2antlr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  ZZ )
9081, 89sseldi 3463 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  RR )
91 letr 9729 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  RR  /\  ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  RR  /\  N  e.  RR )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9284, 87, 90, 91syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9378, 92mpan2d 679 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  ( G `  x )  <_  N
) )
9433ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
9564a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_  RR )
96 ressxr 9686 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
9795, 96syl6ss 3477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
98 imassrn 5196 . . . . . . . . . . . . . . . 16  |-  ( G
" NN )  C_  ran  G
994ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
100 frn 5750 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
10199, 100syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
10298, 101syl5ss 3476 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  Z )
103102, 82syl6ss 3477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
104103, 96syl6ss 3477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
105 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
10668adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )
107 leisorel 12622 . . . . . . . . . . . . 13  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\ 
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN ) )  ->  ( x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10894, 97, 104, 105, 106, 107syl122anc 1274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10983, 24syl6eleq 2521 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
110 elfz5 11794 . . . . . . . . . . . . 13  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
111109, 89, 110syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
11293, 108, 1113imtr4d 272 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  ( G `  x )  e.  ( M ... N
) ) )
113 elpreima 6015 . . . . . . . . . . . . 13  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... N ) ) ) )
114113baibd 918 . . . . . . . . . . . 12  |-  ( ( G  Fn  NN  /\  x  e.  NN )  ->  ( x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
11558, 114sylan 474 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
116112, 115sylibrd 238 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  x  e.  ( `' G "
( M ... N
) ) ) )
117 fimaxre2 10554 . . . . . . . . . . . . 13  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  e.  Fin )  ->  E. x  e.  RR  A. y  e.  ( `' G " ( M ... N ) ) y  <_  x )
11865, 48, 117syl2anc 666 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )
119 suprub 10572 . . . . . . . . . . . . 13  |-  ( ( ( ( `' G " ( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  /\  x  e.  ( `' G "
( M ... N
) ) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )
120119ex 436 . . . . . . . . . . . 12  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
12165, 63, 118, 120syl3anc 1265 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )
122121adantr 467 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
123116, 122impbid 194 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
12471, 123bitrd 257 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
125124ex 436 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  NN  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) ) )
1262, 9, 125pm5.21ndd 356 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
127126eqrdv 2420 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( `' G " ( M ... N ) ) )
128127fveq2d 5883 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  (
# `  ( `' G " ( M ... N ) ) ) )
12968nnnn0d 10927 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN0 )
130 hashfz1 12530 . . . . 5  |-  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN0  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
131129, 130syl 17 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
132 hashen 12531 . . . . . 6  |-  ( ( ( `' G "
( M ... N
) )  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  e.  Fin )  ->  ( ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) )  <->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) ) )
13348, 22, 132syl2anc 666 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( `' G " ( M ... N
) ) )  =  ( # `  ( G " ( `' G " ( M ... N
) ) ) )  <-> 
( `' G "
( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) ) )
13446, 133mpbird 236 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )
135128, 131, 1343eqtr3d 2472 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  =  (
# `  ( G " ( `' G "
( M ... N
) ) ) ) )
136135oveq2d 6319 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) )
137136, 127eqtr3d 2466 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777   _Vcvv 3082    i^i cin 3436    C_ wss 3437   (/)c0 3762   class class class wbr 4421    Or wor 4771   `'ccnv 4850   dom cdm 4851   ran crn 4852    |` cres 4853   "cima 4854   Fun wfun 5593    Fn wfn 5594   -->wf 5595   -1-1->wf1 5596   -1-1-onto->wf1o 5598   ` cfv 5599    Isom wiso 5600  (class class class)co 6303    ~~ cen 7572   Fincfn 7575   supcsup 7958   RRcr 9540   1c1 9542    + caddc 9544   RR*cxr 9676    < clt 9677    <_ cle 9678   NNcn 10611   NN0cn0 10871   ZZcz 10939   ZZ>=cuz 11161   ...cfz 11786   #chash 12516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-card 8376  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-nn 10612  df-n0 10872  df-z 10940  df-uz 11162  df-fz 11787  df-hash 12517
This theorem is referenced by:  isercolllem3  13723
  Copyright terms: Public domain W3C validator