MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Unicode version

Theorem isercolllem2 13247
Description: Lemma for isercoll 13249. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Distinct variable groups:    k, N    ph, k    k, G    k, M
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 11581 . . . . . . . 8  |-  ( x  e.  ( 1 ...
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  x  e.  NN )
21a1i 11 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  ->  x  e.  NN )
)
3 cnvimass 5289 . . . . . . . . 9  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
4 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
54adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
6 fdm 5663 . . . . . . . . . 10  |-  ( G : NN --> Z  ->  dom  G  =  NN )
75, 6syl 16 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
83, 7syl5sseq 3504 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
98sseld 3455 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  e.  NN ) )
10 id 22 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN )
11 nnuz 10999 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2549 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
13 ltso 9558 . . . . . . . . . . . . . 14  |-  <  Or  RR
1413a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  <  Or  RR )
15 fzfid 11898 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... N )  e.  Fin )
16 ffun 5661 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  Fun  G )
17 funimacnv 5590 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
185, 16, 173syl 20 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
19 inss1 3670 . . . . . . . . . . . . . . . 16  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
2018, 19syl6eqss 3506 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
21 ssfi 7636 . . . . . . . . . . . . . . 15  |-  ( ( ( M ... N
)  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  C_  ( M ... N ) )  -> 
( G " ( `' G " ( M ... N ) ) )  e.  Fin )
2215, 20, 21syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  e. 
Fin )
23 ssid 3475 . . . . . . . . . . . . . . . . . . . . 21  |-  NN  C_  NN
24 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
25 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  ZZ )
26 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
2724, 25, 4, 26isercolllem1 13246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2823, 27mpan2 671 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
29 ffn 5659 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G : NN --> Z  ->  G  Fn  NN )
30 fnresdm 5620 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
31 isoeq1 6111 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
324, 29, 30, 314syl 21 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3328, 32mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
34 isof1o 6117 . . . . . . . . . . . . . . . . . . 19  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
35 f1ocnv 5753 . . . . . . . . . . . . . . . . . . 19  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
36 f1ofun 5743 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
3733, 34, 35, 364syl 21 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' G )
38 df-f1 5523 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
394, 37, 38sylanbrc 664 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : NN -1-1-> Z
)
4039adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
-1-1-> Z )
41 nnex 10431 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
42 ssexg 4538 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' G "
( M ... N
) )  C_  NN  /\  NN  e.  _V )  ->  ( `' G "
( M ... N
) )  e.  _V )
438, 41, 42sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
_V )
44 f1imaeng 7471 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN -1-1-> Z  /\  ( `' G "
( M ... N
) )  C_  NN  /\  ( `' G "
( M ... N
) )  e.  _V )  ->  ( G "
( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4540, 8, 43, 44syl3anc 1219 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4645ensymd 7462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) )
47 enfii 7633 . . . . . . . . . . . . . 14  |-  ( ( ( G " ( `' G " ( M ... N ) ) )  e.  Fin  /\  ( `' G " ( M ... N ) ) 
~~  ( G "
( `' G "
( M ... N
) ) ) )  ->  ( `' G " ( M ... N
) )  e.  Fin )
4822, 46, 47syl2anc 661 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
Fin )
49 1nn 10436 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
51 ffvelrn 5942 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
524, 49, 51sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  1
)  e.  Z )
5352, 24syl6eleq 2549 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
5453adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
55 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
56 elfzuzb 11550 . . . . . . . . . . . . . . . 16  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
5754, 55, 56sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
585, 29syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G  Fn  NN )
59 elpreima 5924 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
6058, 59syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
6150, 57, 60mpbir2and 913 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
62 ne0i 3743 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
6361, 62syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
64 nnssre 10429 . . . . . . . . . . . . . 14  |-  NN  C_  RR
658, 64syl6ss 3468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  RR )
66 fisupcl 7820 . . . . . . . . . . . . 13  |-  ( (  <  Or  RR  /\  ( ( `' G " ( M ... N
) )  e.  Fin  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  ( `' G " ( M ... N ) ) 
C_  RR ) )  ->  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N
) ) )
6714, 48, 63, 65, 66syl13anc 1221 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) ) )
688, 67sseldd 3457 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN )
6968nnzd 10849 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ZZ )
70 elfz5 11548 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ZZ )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
7112, 69, 70syl2anr 478 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) ) )
72 elpreima 5924 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  NN  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7358, 72syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7467, 73mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
) ) )
7574simprd 463 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) )
76 elfzle2 11558 . . . . . . . . . . . . . . 15  |-  ( ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
)  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7775, 76syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7877adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
79 uzssz 10983 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  M )  C_  ZZ
8024, 79eqsstri 3486 . . . . . . . . . . . . . . . 16  |-  Z  C_  ZZ
81 zssre 10756 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8280, 81sstri 3465 . . . . . . . . . . . . . . 15  |-  Z  C_  RR
835ffvelrnda 5944 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
8482, 83sseldi 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  RR )
855, 68ffvelrnd 5945 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8685adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8782, 86sseldi 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  RR )
88 eluzelz 10973 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  ( G `  1 )
)  ->  N  e.  ZZ )
8988ad2antlr 726 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  ZZ )
9081, 89sseldi 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  RR )
91 letr 9571 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  RR  /\  ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  RR  /\  N  e.  RR )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9284, 87, 90, 91syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9378, 92mpan2d 674 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  ( G `  x )  <_  N
) )
9433ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
9564a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_  RR )
96 ressxr 9530 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
9795, 96syl6ss 3468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
98 imassrn 5280 . . . . . . . . . . . . . . . 16  |-  ( G
" NN )  C_  ran  G
994ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
100 frn 5665 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
10199, 100syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
10298, 101syl5ss 3467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  Z )
103102, 82syl6ss 3468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
104103, 96syl6ss 3468 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
105 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
10668adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )
107 leisorel 12317 . . . . . . . . . . . . 13  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\ 
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN ) )  ->  ( x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10894, 97, 104, 105, 106, 107syl122anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10983, 24syl6eleq 2549 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
110 elfz5 11548 . . . . . . . . . . . . 13  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
111109, 89, 110syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
11293, 108, 1113imtr4d 268 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  ( G `  x )  e.  ( M ... N
) ) )
113 elpreima 5924 . . . . . . . . . . . . 13  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... N ) ) ) )
114113baibd 900 . . . . . . . . . . . 12  |-  ( ( G  Fn  NN  /\  x  e.  NN )  ->  ( x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
11558, 114sylan 471 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
116112, 115sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  x  e.  ( `' G "
( M ... N
) ) ) )
117 fimaxre2 10381 . . . . . . . . . . . . 13  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  e.  Fin )  ->  E. x  e.  RR  A. y  e.  ( `' G " ( M ... N ) ) y  <_  x )
11865, 48, 117syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )
119 suprub 10394 . . . . . . . . . . . . 13  |-  ( ( ( ( `' G " ( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  /\  x  e.  ( `' G "
( M ... N
) ) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )
120119ex 434 . . . . . . . . . . . 12  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
12165, 63, 118, 120syl3anc 1219 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )
122121adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
123116, 122impbid 191 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
12471, 123bitrd 253 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
125124ex 434 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  NN  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) ) )
1262, 9, 125pm5.21ndd 354 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
127126eqrdv 2448 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( `' G " ( M ... N ) ) )
128127fveq2d 5795 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  (
# `  ( `' G " ( M ... N ) ) ) )
12968nnnn0d 10739 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN0 )
130 hashfz1 12220 . . . . 5  |-  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN0  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
131129, 130syl 16 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
132 hashen 12221 . . . . . 6  |-  ( ( ( `' G "
( M ... N
) )  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  e.  Fin )  ->  ( ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) )  <->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) ) )
13348, 22, 132syl2anc 661 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( `' G " ( M ... N
) ) )  =  ( # `  ( G " ( `' G " ( M ... N
) ) ) )  <-> 
( `' G "
( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) ) )
13446, 133mpbird 232 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )
135128, 131, 1343eqtr3d 2500 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  =  (
# `  ( G " ( `' G "
( M ... N
) ) ) ) )
136135oveq2d 6208 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) )
137136, 127eqtr3d 2494 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   _Vcvv 3070    i^i cin 3427    C_ wss 3428   (/)c0 3737   class class class wbr 4392    Or wor 4740   `'ccnv 4939   dom cdm 4940   ran crn 4941    |` cres 4942   "cima 4943   Fun wfun 5512    Fn wfn 5513   -->wf 5514   -1-1->wf1 5515   -1-1-onto->wf1o 5517   ` cfv 5518    Isom wiso 5519  (class class class)co 6192    ~~ cen 7409   Fincfn 7412   supcsup 7793   RRcr 9384   1c1 9386    + caddc 9388   RR*cxr 9520    < clt 9521    <_ cle 9522   NNcn 10425   NN0cn0 10682   ZZcz 10749   ZZ>=cuz 10964   ...cfz 11540   #chash 12206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462  ax-pre-sup 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-isom 5527  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-sup 7794  df-card 8212  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-hash 12207
This theorem is referenced by:  isercolllem3  13248
  Copyright terms: Public domain W3C validator