MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Visualization version   Unicode version

Theorem isercolllem1 13740
Description: Lemma for isercoll 13743. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Distinct variable groups:    ph, k    k, G    k, M
Allowed substitution hints:    S( k)    Z( k)

Proof of Theorem isercolllem1
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
2 uzssz 11185 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3464 . . . . . . . . . 10  |-  Z  C_  ZZ
4 zssre 10951 . . . . . . . . . 10  |-  ZZ  C_  RR
53, 4sstri 3443 . . . . . . . . 9  |-  Z  C_  RR
6 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
76ad2antrr 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  G : NN
--> Z )
8 simplrl 771 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  NN )
97, 8ffvelrnd 6028 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  Z
)
105, 9sseldi 3432 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  RR )
11 simplrr 772 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  NN )
1211nnred 10631 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  RR )
1310, 12resubcld 10054 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  e.  RR )
148nnred 10631 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  RR )
1510, 14resubcld 10054 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  e.  RR )
167, 11ffvelrnd 6028 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  Z
)
175, 16sseldi 3432 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  RR )
1817, 12resubcld 10054 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  y )  -  y )  e.  RR )
19 simpr 463 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <  y )
2014, 12, 10, 19ltsub2dd 10233 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  x )  -  x
) )
218nnzd 11046 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  ZZ )
2211nnzd 11046 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ZZ )
2314, 12, 19ltled 9788 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <_  y )
24 eluz2 11172 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  x
)  <->  ( x  e.  ZZ  /\  y  e.  ZZ  /\  x  <_ 
y ) )
2521, 22, 23, 24syl3anbrc 1193 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ( ZZ>= `  x )
)
26 elfzuz 11803 . . . . . . . . . 10  |-  ( k  e.  ( x ... y )  ->  k  e.  ( ZZ>= `  x )
)
27 eluznn 11236 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  k  e.  ( ZZ>= `  x ) )  -> 
k  e.  NN )
288, 27sylan 474 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  k  e.  NN )
29 fveq2 5870 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
30 id 22 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  n  =  k )
3129, 30oveq12d 6313 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  -  n )  =  ( ( G `
 k )  -  k ) )
32 eqid 2453 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( ( G `  n )  -  n ) )  =  ( n  e.  NN  |->  ( ( G `
 n )  -  n ) )
33 ovex 6323 . . . . . . . . . . . . . 14  |-  ( ( G `  k )  -  k )  e. 
_V
3431, 32, 33fvmpt 5953 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
3534adantl 468 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
367ffvelrnda 6027 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  Z )
375, 36sseldi 3432 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
38 nnre 10623 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
3938adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  RR )
4037, 39resubcld 10054 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  e.  RR )
4135, 40eqeltrd 2531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
4228, 41syldan 473 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  e.  RR )
4326, 42sylan2 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... y
) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
44 elfzuz 11803 . . . . . . . . . 10  |-  ( k  e.  ( x ... ( y  -  1 ) )  ->  k  e.  ( ZZ>= `  x )
)
45 peano2nn 10628 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
46 ffvelrn 6025 . . . . . . . . . . . . . . . . 17  |-  ( ( G : NN --> Z  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z
)
477, 45, 46syl2an 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z )
485, 47sseldi 3432 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  RR )
49 peano2rem 9946 . . . . . . . . . . . . . . 15  |-  ( ( G `  ( k  +  1 ) )  e.  RR  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
5048, 49syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
51 simpll 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ph )
52 isercoll.i . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
5351, 52sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <  ( G `  (
k  +  1 ) ) )
543, 36sseldi 3432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  ZZ )
553, 47sseldi 3432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  ZZ )
56 zltlem1 10996 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  k
)  e.  ZZ  /\  ( G `  ( k  +  1 ) )  e.  ZZ )  -> 
( ( G `  k )  <  ( G `  ( k  +  1 ) )  <-> 
( G `  k
)  <_  ( ( G `  ( k  +  1 ) )  -  1 ) ) )
5754, 55, 56syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  <  ( G `  ( k  +  1 ) )  <->  ( G `  k )  <_  (
( G `  (
k  +  1 ) )  -  1 ) ) )
5853, 57mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <_  ( ( G `  ( k  +  1 ) )  -  1 ) )
5937, 50, 39, 58lesub1dd 10236 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( ( G `  ( k  +  1 ) )  -  1 )  -  k ) )
6048recnd 9674 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  CC )
61 1cnd 9664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  1  e.  CC )
6239recnd 9674 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  CC )
6360, 61, 62sub32d 10023 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( ( G `  ( k  +  1 ) )  -  k )  - 
1 ) )
6460, 62, 61subsub4d 10022 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  k
)  -  1 )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6563, 64eqtrd 2487 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6659, 65breqtrd 4430 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6745adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
68 fveq2 5870 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  ( G `  n )  =  ( G `  ( k  +  1 ) ) )
69 id 22 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
7068, 69oveq12d 6313 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  (
( G `  n
)  -  n )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
71 ovex 6323 . . . . . . . . . . . . . 14  |-  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) )  e. 
_V
7270, 32, 71fvmpt 5953 . . . . . . . . . . . . 13  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7367, 72syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7466, 35, 733brtr4d 4436 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
7528, 74syldan 473 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 ( k  +  1 ) ) )
7644, 75sylan2 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... (
y  -  1 ) ) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
7725, 43, 76monoord 12250 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 y ) )
78 fveq2 5870 . . . . . . . . . . 11  |-  ( n  =  x  ->  ( G `  n )  =  ( G `  x ) )
79 id 22 . . . . . . . . . . 11  |-  ( n  =  x  ->  n  =  x )
8078, 79oveq12d 6313 . . . . . . . . . 10  |-  ( n  =  x  ->  (
( G `  n
)  -  n )  =  ( ( G `
 x )  -  x ) )
81 ovex 6323 . . . . . . . . . 10  |-  ( ( G `  x )  -  x )  e. 
_V
8280, 32, 81fvmpt 5953 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  x
)  =  ( ( G `  x )  -  x ) )
838, 82syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  =  ( ( G `
 x )  -  x ) )
84 fveq2 5870 . . . . . . . . . . 11  |-  ( n  =  y  ->  ( G `  n )  =  ( G `  y ) )
85 id 22 . . . . . . . . . . 11  |-  ( n  =  y  ->  n  =  y )
8684, 85oveq12d 6313 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( G `  n
)  -  n )  =  ( ( G `
 y )  -  y ) )
87 ovex 6323 . . . . . . . . . 10  |-  ( ( G `  y )  -  y )  e. 
_V
8886, 32, 87fvmpt 5953 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  y
)  =  ( ( G `  y )  -  y ) )
8911, 88syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  y )  =  ( ( G `
 y )  -  y ) )
9077, 83, 893brtr3d 4435 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  <_  (
( G `  y
)  -  y ) )
9113, 15, 18, 20, 90ltletrd 9800 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  y )  -  y
) )
9210, 17, 12ltsub1d 10229 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  <  ( G `  y
)  <->  ( ( G `
 x )  -  y )  <  (
( G `  y
)  -  y ) ) )
9391, 92mpbird 236 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  <  ( G `  y )
)
9493ex 436 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  -> 
( x  <  y  ->  ( G `  x
)  <  ( G `  y ) ) )
9594ralrimivva 2811 . . 3  |-  ( ph  ->  A. x  e.  NN  A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) ) )
96 ssralv 3495 . . . . 5  |-  ( S 
C_  NN  ->  ( A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) )  ->  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) ) )
9796ralimdv 2800 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  NN  A. y  e.  S  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
) ) )
98 ssralv 3495 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
9997, 98syld 45 . . 3  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
10095, 99mpan9 472 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) )
101 nnssre 10620 . . . . 5  |-  NN  C_  RR
102 ltso 9719 . . . . 5  |-  <  Or  RR
103 soss 4776 . . . . 5  |-  ( NN  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN ) )
104101, 102, 103mp2 9 . . . 4  |-  <  Or  NN
105104a1i 11 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  NN )
106 soss 4776 . . . . 5  |-  ( Z 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  Z ) )
1075, 102, 106mp2 9 . . . 4  |-  <  Or  Z
108107a1i 11 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  Z
)
1096adantr 467 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  G : NN --> Z )
110 simpr 463 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  S  C_  NN )
111 soisores 6223 . . 3  |-  ( ( (  <  Or  NN  /\ 
<  Or  Z )  /\  ( G : NN --> Z  /\  S  C_  NN ) )  ->  (
( G  |`  S ) 
Isom  <  ,  <  ( S ,  ( G " S ) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
112105, 108, 109, 110, 111syl22anc 1270 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  ( ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
113100, 112mpbird 236 1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   A.wral 2739    C_ wss 3406   class class class wbr 4405    |-> cmpt 4464    Or wor 4757    |` cres 4839   "cima 4840   -->wf 5581   ` cfv 5585    Isom wiso 5586  (class class class)co 6295   RRcr 9543   1c1 9545    + caddc 9547    < clt 9680    <_ cle 9681    - cmin 9865   NNcn 10616   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-nn 10617  df-n0 10877  df-z 10945  df-uz 11167  df-fz 11792
This theorem is referenced by:  isercolllem2  13741  isercolllem3  13742  isercoll  13743
  Copyright terms: Public domain W3C validator