MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Structured version   Unicode version

Theorem isercolllem1 13499
Description: Lemma for isercoll 13502. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Distinct variable groups:    ph, k    k, G    k, M
Allowed substitution hints:    S( k)    Z( k)

Proof of Theorem isercolllem1
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
2 uzssz 11125 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3529 . . . . . . . . . 10  |-  Z  C_  ZZ
4 zssre 10892 . . . . . . . . . 10  |-  ZZ  C_  RR
53, 4sstri 3508 . . . . . . . . 9  |-  Z  C_  RR
6 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
76ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  G : NN
--> Z )
8 simplrl 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  NN )
97, 8ffvelrnd 6033 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  Z
)
105, 9sseldi 3497 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  RR )
11 simplrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  NN )
1211nnred 10571 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  RR )
1310, 12resubcld 10008 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  e.  RR )
148nnred 10571 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  RR )
1510, 14resubcld 10008 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  e.  RR )
167, 11ffvelrnd 6033 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  Z
)
175, 16sseldi 3497 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  RR )
1817, 12resubcld 10008 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  y )  -  y )  e.  RR )
19 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <  y )
2014, 12, 10, 19ltsub2dd 10186 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  x )  -  x
) )
218nnzd 10989 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  ZZ )
2211nnzd 10989 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ZZ )
2314, 12, 19ltled 9750 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <_  y )
24 eluz2 11112 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  x
)  <->  ( x  e.  ZZ  /\  y  e.  ZZ  /\  x  <_ 
y ) )
2521, 22, 23, 24syl3anbrc 1180 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ( ZZ>= `  x )
)
26 elfzuz 11709 . . . . . . . . . 10  |-  ( k  e.  ( x ... y )  ->  k  e.  ( ZZ>= `  x )
)
27 eluznn 11177 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  k  e.  ( ZZ>= `  x ) )  -> 
k  e.  NN )
288, 27sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  k  e.  NN )
29 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
30 id 22 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  n  =  k )
3129, 30oveq12d 6314 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  -  n )  =  ( ( G `
 k )  -  k ) )
32 eqid 2457 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( ( G `  n )  -  n ) )  =  ( n  e.  NN  |->  ( ( G `
 n )  -  n ) )
33 ovex 6324 . . . . . . . . . . . . . 14  |-  ( ( G `  k )  -  k )  e. 
_V
3431, 32, 33fvmpt 5956 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
3534adantl 466 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
367ffvelrnda 6032 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  Z )
375, 36sseldi 3497 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
38 nnre 10563 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
3938adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  RR )
4037, 39resubcld 10008 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  e.  RR )
4135, 40eqeltrd 2545 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
4228, 41syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  e.  RR )
4326, 42sylan2 474 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... y
) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
44 elfzuz 11709 . . . . . . . . . 10  |-  ( k  e.  ( x ... ( y  -  1 ) )  ->  k  e.  ( ZZ>= `  x )
)
45 peano2nn 10568 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
46 ffvelrn 6030 . . . . . . . . . . . . . . . . 17  |-  ( ( G : NN --> Z  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z
)
477, 45, 46syl2an 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z )
485, 47sseldi 3497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  RR )
49 peano2rem 9905 . . . . . . . . . . . . . . 15  |-  ( ( G `  ( k  +  1 ) )  e.  RR  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
5048, 49syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
51 simpll 753 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ph )
52 isercoll.i . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
5351, 52sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <  ( G `  (
k  +  1 ) ) )
543, 36sseldi 3497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  ZZ )
553, 47sseldi 3497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  ZZ )
56 zltlem1 10937 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  k
)  e.  ZZ  /\  ( G `  ( k  +  1 ) )  e.  ZZ )  -> 
( ( G `  k )  <  ( G `  ( k  +  1 ) )  <-> 
( G `  k
)  <_  ( ( G `  ( k  +  1 ) )  -  1 ) ) )
5754, 55, 56syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  <  ( G `  ( k  +  1 ) )  <->  ( G `  k )  <_  (
( G `  (
k  +  1 ) )  -  1 ) ) )
5853, 57mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <_  ( ( G `  ( k  +  1 ) )  -  1 ) )
5937, 50, 39, 58lesub1dd 10189 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( ( G `  ( k  +  1 ) )  -  1 )  -  k ) )
6048recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  CC )
61 1cnd 9629 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  1  e.  CC )
6239recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  CC )
6360, 61, 62sub32d 9982 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( ( G `  ( k  +  1 ) )  -  k )  - 
1 ) )
6460, 62, 61subsub4d 9981 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  k
)  -  1 )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6563, 64eqtrd 2498 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6659, 65breqtrd 4480 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
6745adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
68 fveq2 5872 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  ( G `  n )  =  ( G `  ( k  +  1 ) ) )
69 id 22 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
7068, 69oveq12d 6314 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  (
( G `  n
)  -  n )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
71 ovex 6324 . . . . . . . . . . . . . 14  |-  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) )  e. 
_V
7270, 32, 71fvmpt 5956 . . . . . . . . . . . . 13  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7367, 72syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7466, 35, 733brtr4d 4486 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
7528, 74syldan 470 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 ( k  +  1 ) ) )
7644, 75sylan2 474 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... (
y  -  1 ) ) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
7725, 43, 76monoord 12140 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 y ) )
78 fveq2 5872 . . . . . . . . . . 11  |-  ( n  =  x  ->  ( G `  n )  =  ( G `  x ) )
79 id 22 . . . . . . . . . . 11  |-  ( n  =  x  ->  n  =  x )
8078, 79oveq12d 6314 . . . . . . . . . 10  |-  ( n  =  x  ->  (
( G `  n
)  -  n )  =  ( ( G `
 x )  -  x ) )
81 ovex 6324 . . . . . . . . . 10  |-  ( ( G `  x )  -  x )  e. 
_V
8280, 32, 81fvmpt 5956 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  x
)  =  ( ( G `  x )  -  x ) )
838, 82syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  =  ( ( G `
 x )  -  x ) )
84 fveq2 5872 . . . . . . . . . . 11  |-  ( n  =  y  ->  ( G `  n )  =  ( G `  y ) )
85 id 22 . . . . . . . . . . 11  |-  ( n  =  y  ->  n  =  y )
8684, 85oveq12d 6314 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( G `  n
)  -  n )  =  ( ( G `
 y )  -  y ) )
87 ovex 6324 . . . . . . . . . 10  |-  ( ( G `  y )  -  y )  e. 
_V
8886, 32, 87fvmpt 5956 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  y
)  =  ( ( G `  y )  -  y ) )
8911, 88syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  y )  =  ( ( G `
 y )  -  y ) )
9077, 83, 893brtr3d 4485 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  <_  (
( G `  y
)  -  y ) )
9113, 15, 18, 20, 90ltletrd 9759 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  y )  -  y
) )
9210, 17, 12ltsub1d 10182 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  <  ( G `  y
)  <->  ( ( G `
 x )  -  y )  <  (
( G `  y
)  -  y ) ) )
9391, 92mpbird 232 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  <  ( G `  y )
)
9493ex 434 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  -> 
( x  <  y  ->  ( G `  x
)  <  ( G `  y ) ) )
9594ralrimivva 2878 . . 3  |-  ( ph  ->  A. x  e.  NN  A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) ) )
96 ssralv 3560 . . . . 5  |-  ( S 
C_  NN  ->  ( A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) )  ->  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) ) )
9796ralimdv 2867 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  NN  A. y  e.  S  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
) ) )
98 ssralv 3560 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
9997, 98syld 44 . . 3  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
10095, 99mpan9 469 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) )
101 nnssre 10560 . . . . 5  |-  NN  C_  RR
102 ltso 9682 . . . . 5  |-  <  Or  RR
103 soss 4827 . . . . 5  |-  ( NN  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN ) )
104101, 102, 103mp2 9 . . . 4  |-  <  Or  NN
105104a1i 11 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  NN )
106 soss 4827 . . . . 5  |-  ( Z 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  Z ) )
1075, 102, 106mp2 9 . . . 4  |-  <  Or  Z
108107a1i 11 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  Z
)
1096adantr 465 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  G : NN --> Z )
110 simpr 461 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  S  C_  NN )
111 soisores 6224 . . 3  |-  ( ( (  <  Or  NN  /\ 
<  Or  Z )  /\  ( G : NN --> Z  /\  S  C_  NN ) )  ->  (
( G  |`  S ) 
Isom  <  ,  <  ( S ,  ( G " S ) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
112105, 108, 109, 110, 111syl22anc 1229 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  ( ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
113100, 112mpbird 232 1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807    C_ wss 3471   class class class wbr 4456    |-> cmpt 4515    Or wor 4808    |` cres 5010   "cima 5011   -->wf 5590   ` cfv 5594    Isom wiso 5595  (class class class)co 6296   RRcr 9508   1c1 9510    + caddc 9512    < clt 9645    <_ cle 9646    - cmin 9824   NNcn 10556   ZZcz 10885   ZZ>=cuz 11106   ...cfz 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698
This theorem is referenced by:  isercolllem2  13500  isercolllem3  13501  isercoll  13502
  Copyright terms: Public domain W3C validator