Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Structured version   Unicode version

Theorem isdrngo3 29963
Description: A division ring is a ring in which  1  =/=  0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1  |-  G  =  ( 1st `  R
)
isdivrng1.2  |-  H  =  ( 2nd `  R
)
isdivrng1.3  |-  Z  =  (GId `  G )
isdivrng1.4  |-  X  =  ran  G
isdivrng2.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isdrngo3  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
Distinct variable groups:    x, H, y    x, X, y    x, Z, y    x, R, y   
x, U, y
Allowed substitution hints:    G( x, y)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3  |-  G  =  ( 1st `  R
)
2 isdivrng1.2 . . 3  |-  H  =  ( 2nd `  R
)
3 isdivrng1.3 . . 3  |-  Z  =  (GId `  G )
4 isdivrng1.4 . . 3  |-  X  =  ran  G
5 isdivrng2.5 . . 3  |-  U  =  (GId `  H )
61, 2, 3, 4, 5isdrngo2 29962 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) ) )
7 eldifi 3626 . . . . . 6  |-  ( x  e.  ( X  \  { Z } )  ->  x  e.  X )
8 difss 3631 . . . . . . . 8  |-  ( X 
\  { Z }
)  C_  X
9 ssrexv 3565 . . . . . . . 8  |-  ( ( X  \  { Z } )  C_  X  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  ->  E. y  e.  X  ( y H x )  =  U ) )
108, 9ax-mp 5 . . . . . . 7  |-  ( E. y  e.  ( X 
\  { Z }
) ( y H x )  =  U  ->  E. y  e.  X  ( y H x )  =  U )
11 neeq1 2748 . . . . . . . . . . . . . . . 16  |-  ( ( y H x )  =  U  ->  (
( y H x )  =/=  Z  <->  U  =/=  Z ) )
1211biimparc 487 . . . . . . . . . . . . . . 15  |-  ( ( U  =/=  Z  /\  ( y H x )  =  U )  ->  ( y H x )  =/=  Z
)
133, 4, 1, 2rngolz 25076 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  ( Z H x )  =  Z )
14 oveq1 6289 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  Z  ->  (
y H x )  =  ( Z H x ) )
1514eqeq1d 2469 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  Z  ->  (
( y H x )  =  Z  <->  ( Z H x )  =  Z ) )
1613, 15syl5ibrcom 222 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
y  =  Z  -> 
( y H x )  =  Z ) )
1716necon3d 2691 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
( y H x )  =/=  Z  -> 
y  =/=  Z ) )
1817imp 429 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  x  e.  X )  /\  ( y H x )  =/=  Z )  ->  y  =/=  Z
)
1912, 18sylan2 474 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  x  e.  X )  /\  ( U  =/=  Z  /\  ( y H x )  =  U ) )  ->  y  =/=  Z )
2019an4s 824 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  ( x  e.  X  /\  ( y H x )  =  U ) )  ->  y  =/=  Z )
2120anassrs 648 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
y  =/=  Z )
22 pm3.2 447 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  (
y  =/=  Z  -> 
( y  e.  X  /\  y  =/=  Z
) ) )
2321, 22syl5com 30 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
( y  e.  X  ->  ( y  e.  X  /\  y  =/=  Z
) ) )
24 eldifsn 4152 . . . . . . . . . . 11  |-  ( y  e.  ( X  \  { Z } )  <->  ( y  e.  X  /\  y  =/=  Z ) )
2523, 24syl6ibr 227 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
( y  e.  X  ->  y  e.  ( X 
\  { Z }
) ) )
2625imdistanda 693 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( ( ( y H x )  =  U  /\  y  e.  X )  ->  (
( y H x )  =  U  /\  y  e.  ( X  \  { Z } ) ) ) )
27 ancom 450 . . . . . . . . 9  |-  ( ( y  e.  X  /\  ( y H x )  =  U )  <-> 
( ( y H x )  =  U  /\  y  e.  X
) )
28 ancom 450 . . . . . . . . 9  |-  ( ( y  e.  ( X 
\  { Z }
)  /\  ( y H x )  =  U )  <->  ( (
y H x )  =  U  /\  y  e.  ( X  \  { Z } ) ) )
2926, 27, 283imtr4g 270 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( ( y  e.  X  /\  ( y H x )  =  U )  ->  (
y  e.  ( X 
\  { Z }
)  /\  ( y H x )  =  U ) ) )
3029reximdv2 2934 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( E. y  e.  X  ( y H x )  =  U  ->  E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) )
3110, 30impbid2 204 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  E. y  e.  X  ( y H x )  =  U ) )
327, 31sylan2 474 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  ( X  \  { Z } ) )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  E. y  e.  X  ( y H x )  =  U ) )
3332ralbidva 2900 . . . 4  |-  ( ( R  e.  RingOps  /\  U  =/=  Z )  ->  ( A. x  e.  ( X  \  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) )
3433pm5.32da 641 . . 3  |-  ( R  e.  RingOps  ->  ( ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U )  <->  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
3534pm5.32i 637 . 2  |-  ( ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) )  <->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
366, 35bitri 249 1  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    \ cdif 3473    C_ wss 3476   {csn 4027   ran crn 5000   ` cfv 5586  (class class class)co 6282   1stc1st 6779   2ndc2nd 6780  GIdcgi 24862   RingOpscrngo 25050   DivRingOpscdrng 25080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-om 6679  df-1st 6781  df-2nd 6782  df-1o 7127  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-grpo 24866  df-gid 24867  df-ginv 24868  df-ablo 24957  df-ass 24988  df-exid 24990  df-mgm 24994  df-sgr 25006  df-mndo 25013  df-rngo 25051  df-drngo 25081
This theorem is referenced by:  isfldidl  30066
  Copyright terms: Public domain W3C validator