MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn Structured version   Unicode version

Theorem isdomn 17371
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b  |-  B  =  ( Base `  R
)
isdomn.t  |-  .x.  =  ( .r `  R )
isdomn.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Distinct variable groups:    x, B, y    x, R, y    x,  .0. , y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isdomn
Dummy variables  b 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5706 . . . 4  |-  ( Base `  r )  e.  _V
21a1i 11 . . 3  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
3 fveq2 5696 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
4 isdomn.b . . . 4  |-  B  =  ( Base `  R
)
53, 4syl6eqr 2493 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
6 fvex 5706 . . . . 5  |-  ( 0g
`  r )  e. 
_V
76a1i 11 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  e.  _V )
8 fveq2 5696 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
98adantr 465 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
10 isdomn.z . . . . 5  |-  .0.  =  ( 0g `  R )
119, 10syl6eqr 2493 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  .0.  )
12 simplr 754 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  b  =  B )
13 fveq2 5696 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
14 isdomn.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1513, 14syl6eqr 2493 . . . . . . . . 9  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1615proplem3 14634 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( x ( .r
`  r ) y )  =  ( x 
.x.  y ) )
17 id 22 . . . . . . . 8  |-  ( z  =  .0.  ->  z  =  .0.  )
1816, 17eqeqan12d 2458 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x ( .r
`  r ) y )  =  z  <->  ( x  .x.  y )  =  .0.  ) )
19 eqeq2 2452 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
x  =  z  <->  x  =  .0.  ) )
20 eqeq2 2452 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
y  =  z  <->  y  =  .0.  ) )
2119, 20orbi12d 709 . . . . . . . 8  |-  ( z  =  .0.  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2221adantl 466 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2318, 22imbi12d 320 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2412, 23raleqbidv 2936 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2512, 24raleqbidv 2936 . . . 4  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
267, 11, 25sbcied2 3229 . . 3  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) ) )
272, 5, 26sbcied2 3229 . 2  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
28 df-domn 17360 . 2  |- Domn  =  {
r  e. NzRing  |  [. ( Base `  r )  / 
b ]. [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
2927, 28elrab2 3124 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977   [.wsbc 3191   ` cfv 5423  (class class class)co 6096   Basecbs 14179   .rcmulr 14244   0gc0g 14383  NzRingcnzr 17344  Domncdomn 17356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4426
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-iota 5386  df-fv 5431  df-ov 6099  df-domn 17360
This theorem is referenced by:  domnnzr  17372  domneq0  17374  isdomn2  17376  opprdomn  17378  abvn0b  17379  znfld  17998  ply1domn  21600  fta1b  21646  isdomn3  29577
  Copyright terms: Public domain W3C validator