Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Unicode version

Theorem isdmn3 28874
Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1  |-  G  =  ( 1st `  R
)
isdmn3.2  |-  H  =  ( 2nd `  R
)
isdmn3.3  |-  X  =  ran  G
isdmn3.4  |-  Z  =  (GId `  G )
isdmn3.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isdmn3  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Distinct variable groups:    R, a,
b    Z, a, b    H, a, b    X, a, b
Allowed substitution hints:    U( a, b)    G( a, b)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 28855 . 2  |-  ( R  e.  Dmn  <->  ( R  e.  PrRing  /\  R  e. CRingOps ) )
2 isdmn3.1 . . . . . 6  |-  G  =  ( 1st `  R
)
3 isdmn3.4 . . . . . 6  |-  Z  =  (GId `  G )
42, 3isprrngo 28850 . . . . 5  |-  ( R  e.  PrRing 
<->  ( R  e.  RingOps  /\  { Z }  e.  (
PrIdl `  R ) ) )
5 isdmn3.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 isdmn3.3 . . . . . . 7  |-  X  =  ran  G
72, 5, 6ispridlc 28870 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
8 crngorngo 28800 . . . . . . 7  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
98biantrurd 508 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) ) ) )
10 3anass 969 . . . . . . 7  |-  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e. 
{ Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
112, 30idl 28825 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
128, 11syl 16 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  { Z }  e.  ( Idl `  R
) )
1312biantrurd 508 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( { Z }  e.  ( Idl `  R
)  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) ) )
142rneqi 5066 . . . . . . . . . . . . . . 15  |-  ran  G  =  ran  ( 1st `  R
)
156, 14eqtri 2463 . . . . . . . . . . . . . 14  |-  X  =  ran  ( 1st `  R
)
16 isdmn3.5 . . . . . . . . . . . . . 14  |-  U  =  (GId `  H )
1715, 5, 16rngo1cl 23916 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  U  e.  X
)
18 eleq2 2504 . . . . . . . . . . . . . 14  |-  ( { Z }  =  X  ->  ( U  e. 
{ Z }  <->  U  e.  X ) )
19 elsni 3902 . . . . . . . . . . . . . 14  |-  ( U  e.  { Z }  ->  U  =  Z )
2018, 19syl6bir 229 . . . . . . . . . . . . 13  |-  ( { Z }  =  X  ->  ( U  e.  X  ->  U  =  Z ) )
2117, 20syl5com 30 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  ->  U  =  Z ) )
222, 5, 3, 16, 6rngoueqz 23917 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
232, 6, 3rngo0cl 23885 . . . . . . . . . . . . . 14  |-  ( R  e.  RingOps  ->  Z  e.  X
)
24 en1eqsn 7542 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
2524eqcomd 2448 . . . . . . . . . . . . . . 15  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  { Z }  =  X )
2625ex 434 . . . . . . . . . . . . . 14  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  { Z }  =  X )
)
2723, 26syl 16 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  { Z }  =  X ) )
2822, 27sylbird 235 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  { Z }  =  X )
)
2921, 28impbid 191 . . . . . . . . . . 11  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
308, 29syl 16 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
3130necon3bid 2643 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( { Z }  =/=  X  <->  U  =/=  Z ) )
32 ovex 6116 . . . . . . . . . . . . 13  |-  ( a H b )  e. 
_V
3332elsnc 3901 . . . . . . . . . . . 12  |-  ( ( a H b )  e.  { Z }  <->  ( a H b )  =  Z )
34 elsn 3891 . . . . . . . . . . . . 13  |-  ( a  e.  { Z }  <->  a  =  Z )
35 elsn 3891 . . . . . . . . . . . . 13  |-  ( b  e.  { Z }  <->  b  =  Z )
3634, 35orbi12i 521 . . . . . . . . . . . 12  |-  ( ( a  e.  { Z }  \/  b  e.  { Z } )  <->  ( a  =  Z  \/  b  =  Z ) )
3733, 36imbi12i 326 . . . . . . . . . . 11  |-  ( ( ( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) )  <->  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )
3837a1i 11 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
39382ralbidv 2757 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
4031, 39anbi12d 710 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4113, 40bitr3d 255 . . . . . . 7  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) ) ) )  <->  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4210, 41syl5bb 257 . . . . . 6  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
437, 9, 423bitr3d 283 . . . . 5  |-  ( R  e. CRingOps  ->  ( ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
444, 43syl5bb 257 . . . 4  |-  ( R  e. CRingOps  ->  ( R  e. 
PrRing 
<->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4544pm5.32i 637 . . 3  |-  ( ( R  e. CRingOps  /\  R  e. 
PrRing )  <->  ( R  e. CRingOps  /\  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
46 ancom 450 . . 3  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  R  e.  PrRing ) )
47 3anass 969 . . 3  |-  ( ( R  e. CRingOps  /\  U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )  <->  ( R  e. CRingOps 
/\  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4845, 46, 473bitr4i 277 . 2  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  =  Z  -> 
( a  =  Z  \/  b  =  Z ) ) ) )
491, 48bitri 249 1  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   {csn 3877   class class class wbr 4292   ran crn 4841   ` cfv 5418  (class class class)co 6091   1stc1st 6575   2ndc2nd 6576   1oc1o 6913    ~~ cen 7307  GIdcgi 23674   RingOpscrngo 23862  CRingOpsccring 28795   Idlcidl 28807   PrIdlcpridl 28808   PrRingcprrng 28846   Dmncdmn 28847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-1o 6920  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-grpo 23678  df-gid 23679  df-ginv 23680  df-ablo 23769  df-ass 23800  df-exid 23802  df-mgm 23806  df-sgr 23818  df-mndo 23825  df-rngo 23863  df-com2 23898  df-crngo 28796  df-idl 28810  df-pridl 28811  df-prrngo 28848  df-dmn 28849  df-igen 28860
This theorem is referenced by:  dmnnzd  28875
  Copyright terms: Public domain W3C validator