Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Unicode version

Theorem isdmn3 28799
Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1  |-  G  =  ( 1st `  R
)
isdmn3.2  |-  H  =  ( 2nd `  R
)
isdmn3.3  |-  X  =  ran  G
isdmn3.4  |-  Z  =  (GId `  G )
isdmn3.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isdmn3  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Distinct variable groups:    R, a,
b    Z, a, b    H, a, b    X, a, b
Allowed substitution hints:    U( a, b)    G( a, b)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 28780 . 2  |-  ( R  e.  Dmn  <->  ( R  e.  PrRing  /\  R  e. CRingOps ) )
2 isdmn3.1 . . . . . 6  |-  G  =  ( 1st `  R
)
3 isdmn3.4 . . . . . 6  |-  Z  =  (GId `  G )
42, 3isprrngo 28775 . . . . 5  |-  ( R  e.  PrRing 
<->  ( R  e.  RingOps  /\  { Z }  e.  (
PrIdl `  R ) ) )
5 isdmn3.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 isdmn3.3 . . . . . . 7  |-  X  =  ran  G
72, 5, 6ispridlc 28795 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
8 crngorngo 28725 . . . . . . 7  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
98biantrurd 505 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) ) ) )
10 3anass 964 . . . . . . 7  |-  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e. 
{ Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
112, 30idl 28750 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
128, 11syl 16 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  { Z }  e.  ( Idl `  R
) )
1312biantrurd 505 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( { Z }  e.  ( Idl `  R
)  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) ) )
142rneqi 5062 . . . . . . . . . . . . . . 15  |-  ran  G  =  ran  ( 1st `  R
)
156, 14eqtri 2461 . . . . . . . . . . . . . 14  |-  X  =  ran  ( 1st `  R
)
16 isdmn3.5 . . . . . . . . . . . . . 14  |-  U  =  (GId `  H )
1715, 5, 16rngo1cl 23851 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  U  e.  X
)
18 eleq2 2502 . . . . . . . . . . . . . 14  |-  ( { Z }  =  X  ->  ( U  e. 
{ Z }  <->  U  e.  X ) )
19 elsni 3899 . . . . . . . . . . . . . 14  |-  ( U  e.  { Z }  ->  U  =  Z )
2018, 19syl6bir 229 . . . . . . . . . . . . 13  |-  ( { Z }  =  X  ->  ( U  e.  X  ->  U  =  Z ) )
2117, 20syl5com 30 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  ->  U  =  Z ) )
222, 5, 3, 16, 6rngoueqz 23852 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
232, 6, 3rngo0cl 23820 . . . . . . . . . . . . . 14  |-  ( R  e.  RingOps  ->  Z  e.  X
)
24 en1eqsn 7538 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
2524eqcomd 2446 . . . . . . . . . . . . . . 15  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  { Z }  =  X )
2625ex 434 . . . . . . . . . . . . . 14  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  { Z }  =  X )
)
2723, 26syl 16 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  { Z }  =  X ) )
2822, 27sylbird 235 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  { Z }  =  X )
)
2921, 28impbid 191 . . . . . . . . . . 11  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
308, 29syl 16 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
3130necon3bid 2641 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( { Z }  =/=  X  <->  U  =/=  Z ) )
32 ovex 6115 . . . . . . . . . . . . 13  |-  ( a H b )  e. 
_V
3332elsnc 3898 . . . . . . . . . . . 12  |-  ( ( a H b )  e.  { Z }  <->  ( a H b )  =  Z )
34 elsn 3888 . . . . . . . . . . . . 13  |-  ( a  e.  { Z }  <->  a  =  Z )
35 elsn 3888 . . . . . . . . . . . . 13  |-  ( b  e.  { Z }  <->  b  =  Z )
3634, 35orbi12i 518 . . . . . . . . . . . 12  |-  ( ( a  e.  { Z }  \/  b  e.  { Z } )  <->  ( a  =  Z  \/  b  =  Z ) )
3733, 36imbi12i 326 . . . . . . . . . . 11  |-  ( ( ( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) )  <->  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )
3837a1i 11 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
39382ralbidv 2755 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
4031, 39anbi12d 705 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4113, 40bitr3d 255 . . . . . . 7  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) ) ) )  <->  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4210, 41syl5bb 257 . . . . . 6  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
437, 9, 423bitr3d 283 . . . . 5  |-  ( R  e. CRingOps  ->  ( ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
444, 43syl5bb 257 . . . 4  |-  ( R  e. CRingOps  ->  ( R  e. 
PrRing 
<->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4544pm5.32i 632 . . 3  |-  ( ( R  e. CRingOps  /\  R  e. 
PrRing )  <->  ( R  e. CRingOps  /\  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
46 ancom 448 . . 3  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  R  e.  PrRing ) )
47 3anass 964 . . 3  |-  ( ( R  e. CRingOps  /\  U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )  <->  ( R  e. CRingOps 
/\  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4845, 46, 473bitr4i 277 . 2  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  =  Z  -> 
( a  =  Z  \/  b  =  Z ) ) ) )
491, 48bitri 249 1  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   {csn 3874   class class class wbr 4289   ran crn 4837   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   1oc1o 6909    ~~ cen 7303  GIdcgi 23609   RingOpscrngo 23797  CRingOpsccring 28720   Idlcidl 28732   PrIdlcpridl 28733   PrRingcprrng 28771   Dmncdmn 28772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-1o 6916  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-grpo 23613  df-gid 23614  df-ginv 23615  df-ablo 23704  df-ass 23735  df-exid 23737  df-mgm 23741  df-sgr 23753  df-mndo 23760  df-rngo 23798  df-com2 23833  df-crngo 28721  df-idl 28735  df-pridl 28736  df-prrngo 28773  df-dmn 28774  df-igen 28785
This theorem is referenced by:  dmnnzd  28800
  Copyright terms: Public domain W3C validator