MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdlat Structured version   Unicode version

Theorem isdlat 15362
Description: Property of being a distributive lattice. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
isdlat.b  |-  B  =  ( Base `  K
)
isdlat.j  |-  .\/  =  ( join `  K )
isdlat.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
isdlat  |-  ( K  e. DLat 
<->  ( K  e.  Lat  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
Distinct variable groups:    x, y,
z, K    x, B, y, z    x,  .\/ , y,
z    x,  ./\ , y, z

Proof of Theorem isdlat
Dummy variables  k 
b  j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5690 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
2 isdlat.b . . . . . 6  |-  B  =  ( Base `  K
)
31, 2syl6eqr 2492 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
4 dfsbcq 3187 . . . . 5  |-  ( (
Base `  k )  =  B  ->  ( [. ( Base `  k )  /  b ]. [. ( join `  k )  / 
j ]. [. ( meet `  k )  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [. B  / 
b ]. [. ( join `  k )  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
53, 4syl 16 . . . 4  |-  ( k  =  K  ->  ( [. ( Base `  k
)  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [. B  / 
b ]. [. ( join `  k )  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
6 fveq2 5690 . . . . . . . 8  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
7 isdlat.j . . . . . . . 8  |-  .\/  =  ( join `  K )
86, 7syl6eqr 2492 . . . . . . 7  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
9 dfsbcq 3187 . . . . . . 7  |-  ( (
join `  k )  =  .\/  ->  ( [. ( join `  k )  /  j ]. [. ( meet `  k )  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  .\/  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
108, 9syl 16 . . . . . 6  |-  ( k  =  K  ->  ( [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  .\/  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
11 fveq2 5690 . . . . . . . . 9  |-  ( k  =  K  ->  ( meet `  k )  =  ( meet `  K
) )
12 isdlat.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
1311, 12syl6eqr 2492 . . . . . . . 8  |-  ( k  =  K  ->  ( meet `  k )  = 
./\  )
14 dfsbcq 3187 . . . . . . . 8  |-  ( (
meet `  k )  =  ./\  ->  ( [. ( meet `  k )  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
1513, 14syl 16 . . . . . . 7  |-  ( k  =  K  ->  ( [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
1615sbcbidv 3244 . . . . . 6  |-  ( k  =  K  ->  ( [.  .\/  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  .\/  /  j ]. [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
1710, 16bitrd 253 . . . . 5  |-  ( k  =  K  ->  ( [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [.  .\/  /  j ]. [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
1817sbcbidv 3244 . . . 4  |-  ( k  =  K  ->  ( [. B  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [. B  / 
b ]. [.  .\/  /  j ]. [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
195, 18bitrd 253 . . 3  |-  ( k  =  K  ->  ( [. ( Base `  k
)  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  [. B  / 
b ]. [.  .\/  /  j ]. [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
20 fvex 5700 . . . . 5  |-  ( Base `  K )  e.  _V
212, 20eqeltri 2512 . . . 4  |-  B  e. 
_V
22 fvex 5700 . . . . 5  |-  ( join `  K )  e.  _V
237, 22eqeltri 2512 . . . 4  |-  .\/  e.  _V
24 fvex 5700 . . . . 5  |-  ( meet `  K )  e.  _V
2512, 24eqeltri 2512 . . . 4  |-  ./\  e.  _V
26 raleq 2916 . . . . . . . 8  |-  ( b  =  B  ->  ( A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. z  e.  B  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
2726raleqbi1dv 2924 . . . . . . 7  |-  ( b  =  B  ->  ( A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. y  e.  B  A. z  e.  B  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
2827raleqbi1dv 2924 . . . . . 6  |-  ( b  =  B  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) ) )
29 simpr 461 . . . . . . . . . 10  |-  ( ( j  =  .\/  /\  m  =  ./\  )  ->  m  =  ./\  )
30 eqidd 2443 . . . . . . . . . 10  |-  ( ( j  =  .\/  /\  m  =  ./\  )  ->  x  =  x )
31 simpl 457 . . . . . . . . . . 11  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
j  =  .\/  )
3231oveqd 6107 . . . . . . . . . 10  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( y j z )  =  ( y 
.\/  z ) )
3329, 30, 32oveq123d 6111 . . . . . . . . 9  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( x m ( y j z ) )  =  ( x 
./\  ( y  .\/  z ) ) )
3429oveqd 6107 . . . . . . . . . 10  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( x m y )  =  ( x 
./\  y ) )
3529oveqd 6107 . . . . . . . . . 10  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( x m z )  =  ( x 
./\  z ) )
3631, 34, 35oveq123d 6111 . . . . . . . . 9  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( ( x m y ) j ( x m z ) )  =  ( ( x  ./\  y )  .\/  ( x  ./\  z
) ) )
3733, 36eqeq12d 2456 . . . . . . . 8  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <-> 
( x  ./\  (
y  .\/  z )
)  =  ( ( x  ./\  y )  .\/  ( x  ./\  z
) ) ) )
3837ralbidv 2734 . . . . . . 7  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( A. z  e.  B  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
39382ralbidv 2756 . . . . . 6  |-  ( ( j  =  .\/  /\  m  =  ./\  )  -> 
( A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
4028, 39sylan9bb 699 . . . . 5  |-  ( ( b  =  B  /\  ( j  =  .\/  /\  m  =  ./\  )
)  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b  (
x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
41403impb 1183 . . . 4  |-  ( ( b  =  B  /\  j  =  .\/  /\  m  =  ./\  )  ->  ( A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
4221, 23, 25, 41sbc3ie 3263 . . 3  |-  ( [. B  /  b ]. [.  .\/  /  j ]. [.  ./\  /  m ]. A. x  e.  b 
A. y  e.  b 
A. z  e.  b  ( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) )
4319, 42syl6bb 261 . 2  |-  ( k  =  K  ->  ( [. ( Base `  k
)  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) )  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
44 df-dlat 15361 . 2  |- DLat  =  {
k  e.  Lat  |  [. ( Base `  k
)  /  b ]. [. ( join `  k
)  /  j ]. [. ( meet `  k
)  /  m ]. A. x  e.  b  A. y  e.  b  A. z  e.  b 
( x m ( y j z ) )  =  ( ( x m y ) j ( x m z ) ) }
4543, 44elrab2 3118 1  |-  ( K  e. DLat 
<->  ( K  e.  Lat  /\ 
A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y 
.\/  z ) )  =  ( ( x 
./\  y )  .\/  ( x  ./\  z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2714   _Vcvv 2971   [.wsbc 3185   ` cfv 5417  (class class class)co 6090   Basecbs 14173   joincjn 15113   meetcmee 15114   Latclat 15214  DLatcdlat 15360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4420
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-iota 5380  df-fv 5425  df-ov 6093  df-dlat 15361
This theorem is referenced by:  dlatmjdi  15363  dlatl  15364  odudlatb  15365
  Copyright terms: Public domain W3C validator