MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyggen2 Unicode version

Theorem iscyggen2 15446
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
iscyg3.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
Assertion
Ref Expression
iscyggen2  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) ) ) )
Distinct variable groups:    x, n, y, B    y, E    n, X, x, y    n, G, x, y    .x. , n, x, y
Allowed substitution hints:    E( x, n)

Proof of Theorem iscyggen2
StepHypRef Expression
1 iscyg.1 . . 3  |-  B  =  ( Base `  G
)
2 iscyg.2 . . 3  |-  .x.  =  (.g
`  G )
3 iscyg3.e . . 3  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
41, 2, 3iscyggen 15445 . 2  |-  ( X  e.  E  <->  ( X  e.  B  /\  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) )  =  B ) )
51, 2mulgcl 14862 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  n  e.  ZZ  /\  X  e.  B )  ->  (
n  .x.  X )  e.  B )
653expa 1153 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  n  e.  ZZ )  /\  X  e.  B
)  ->  ( n  .x.  X )  e.  B
)
76an32s 780 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  X )  e.  B
)
8 eqid 2404 . . . . . 6  |-  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  ( n  e.  ZZ  |->  ( n  .x.  X ) )
97, 8fmptd 5852 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( n  e.  ZZ  |->  ( n  .x.  X ) ) : ZZ --> B )
10 frn 5556 . . . . 5  |-  ( ( n  e.  ZZ  |->  ( n  .x.  X ) ) : ZZ --> B  ->  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B )
11 eqss 3323 . . . . . 6  |-  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B  <->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B  /\  B  C_  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) ) ) )
1211baib 872 . . . . 5  |-  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  C_  B  ->  ( ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B  <->  B  C_  ran  (
n  e.  ZZ  |->  ( n  .x.  X ) ) ) )
139, 10, 123syl 19 . . . 4  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  B  <->  B  C_  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) ) )
14 dfss3 3298 . . . . 5  |-  ( B 
C_  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  <->  A. y  e.  B  y  e.  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) ) )
15 ovex 6065 . . . . . . 7  |-  ( n 
.x.  X )  e. 
_V
168, 15elrnmpti 5080 . . . . . 6  |-  ( y  e.  ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  <->  E. n  e.  ZZ  y  =  ( n  .x.  X ) )
1716ralbii 2690 . . . . 5  |-  ( A. y  e.  B  y  e.  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  <->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) )
1814, 17bitri 241 . . . 4  |-  ( B 
C_  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  <->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) )
1913, 18syl6bb 253 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  ( ran  ( n  e.  ZZ  |->  ( n 
.x.  X ) )  =  B  <->  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) ) )
2019pm5.32da 623 . 2  |-  ( G  e.  Grp  ->  (
( X  e.  B  /\  ran  ( n  e.  ZZ  |->  ( n  .x.  X ) )  =  B )  <->  ( X  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) ) ) )
214, 20syl5bb 249 1  |-  ( G  e.  Grp  ->  ( X  e.  E  <->  ( X  e.  B  /\  A. y  e.  B  E. n  e.  ZZ  y  =  ( n  .x.  X ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670    C_ wss 3280    e. cmpt 4226   ran crn 4838   -->wf 5409   ` cfv 5413  (class class class)co 6040   ZZcz 10238   Basecbs 13424   Grpcgrp 14640  .gcmg 14644
This theorem is referenced by:  cyggeninv  15448  iscygd  15452  cygznlem3  16805
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-seq 11279  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-mulg 14770
  Copyright terms: Public domain W3C validator