MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg2 Structured version   Unicode version

Theorem iscyg2 17012
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
iscyg3.e  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
Assertion
Ref Expression
iscyg2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\  E  =/=  (/) ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x
Allowed substitution hints:    E( x, n)

Proof of Theorem iscyg2
StepHypRef Expression
1 iscyg.1 . . 3  |-  B  =  ( Base `  G
)
2 iscyg.2 . . 3  |-  .x.  =  (.g
`  G )
31, 2iscyg 17009 . 2  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
4 iscyg3.e . . . . 5  |-  E  =  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }
54neeq1i 2742 . . . 4  |-  ( E  =/=  (/)  <->  { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }  =/=  (/) )
6 rabn0 3814 . . . 4  |-  ( { x  e.  B  |  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B }  =/=  (/)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B )
75, 6bitri 249 . . 3  |-  ( E  =/=  (/)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B )
87anbi2i 694 . 2  |-  ( ( G  e.  Grp  /\  E  =/=  (/) )  <->  ( G  e.  Grp  /\  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) )  =  B ) )
93, 8bitr4i 252 1  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\  E  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808   {crab 2811   (/)c0 3793    |-> cmpt 4515   ran crn 5009   ` cfv 5594  (class class class)co 6296   ZZcz 10885   Basecbs 14644   Grpcgrp 16180  .gcmg 16183  CycGrpccyg 17007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-cnv 5016  df-dm 5018  df-rn 5019  df-iota 5557  df-fv 5602  df-ov 6299  df-cyg 17008
This theorem is referenced by:  iscygd  17017  iscygodd  17018  cyggex2  17026  cyggexb  17028  cygzn  18736
  Copyright terms: Public domain W3C validator