MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Unicode version

Theorem iscyg 17514
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
iscyg  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x

Proof of Theorem iscyg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5882 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 iscyg.1 . . . 4  |-  B  =  ( Base `  G
)
31, 2syl6eqr 2481 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 fveq2 5882 . . . . . . . 8  |-  ( g  =  G  ->  (.g `  g )  =  (.g `  G ) )
5 iscyg.2 . . . . . . . 8  |-  .x.  =  (.g
`  G )
64, 5syl6eqr 2481 . . . . . . 7  |-  ( g  =  G  ->  (.g `  g )  =  .x.  )
76oveqd 6323 . . . . . 6  |-  ( g  =  G  ->  (
n (.g `  g ) x )  =  ( n 
.x.  x ) )
87mpteq2dv 4511 . . . . 5  |-  ( g  =  G  ->  (
n  e.  ZZ  |->  ( n (.g `  g ) x ) )  =  ( n  e.  ZZ  |->  ( n  .x.  x ) ) )
98rneqd 5081 . . . 4  |-  ( g  =  G  ->  ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) ) )
109, 3eqeq12d 2444 . . 3  |-  ( g  =  G  ->  ( ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
)  <->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
113, 10rexeqbidv 3037 . 2  |-  ( g  =  G  ->  ( E. x  e.  ( Base `  g ) ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
12 df-cyg 17513 . 2  |- CycGrp  =  {
g  e.  Grp  |  E. x  e.  ( Base `  g ) ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
) }
1311, 12elrab2 3230 1  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   E.wrex 2772    |-> cmpt 4482   ran crn 4854   ` cfv 5601  (class class class)co 6306   ZZcz 10945   Basecbs 15121   Grpcgrp 16669  .gcmg 16672  CycGrpccyg 17512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-cnv 4861  df-dm 4863  df-rn 4864  df-iota 5565  df-fv 5609  df-ov 6309  df-cyg 17513
This theorem is referenced by:  iscyg2  17517  iscyg3  17521  cyggrp  17524  cygctb  17526  ghmcyg  17530  ablfac2  17722  zncyg  19118
  Copyright terms: Public domain W3C validator