MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscycl Structured version   Unicode version

Theorem iscycl 24287
Description: Properties of a pair of functions to be a cycle (in an undirected graph). (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Assertion
Ref Expression
iscycl  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( F  e.  W  /\  P  e.  Z ) )  -> 
( F ( V Cycles  E ) P  <->  ( F
( V Paths  E ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) ) ) )

Proof of Theorem iscycl
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cycls 24285 . . 3  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( V Cycles  E )  =  { <. f ,  p >.  |  (
f ( V Paths  E
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
2 fveq1 5856 . . . . 5  |-  ( p  =  P  ->  (
p `  0 )  =  ( P ` 
0 ) )
32adantl 466 . . . 4  |-  ( ( f  =  F  /\  p  =  P )  ->  ( p `  0
)  =  ( P `
 0 ) )
4 simpr 461 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  p  =  P )
5 fveq2 5857 . . . . . 6  |-  ( f  =  F  ->  ( # `
 f )  =  ( # `  F
) )
65adantr 465 . . . . 5  |-  ( ( f  =  F  /\  p  =  P )  ->  ( # `  f
)  =  ( # `  F ) )
74, 6fveq12d 5863 . . . 4  |-  ( ( f  =  F  /\  p  =  P )  ->  ( p `  ( # `
 f ) )  =  ( P `  ( # `  F ) ) )
83, 7eqeq12d 2482 . . 3  |-  ( ( f  =  F  /\  p  =  P )  ->  ( ( p ` 
0 )  =  ( p `  ( # `  f ) )  <->  ( P `  0 )  =  ( P `  ( # `
 F ) ) ) )
91, 8isprmpt2 6943 . 2  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( ( F  e.  W  /\  P  e.  Z )  ->  ( F ( V Cycles  E
) P  <->  ( F
( V Paths  E ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) ) ) ) )
109imp 429 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( F  e.  W  /\  P  e.  Z ) )  -> 
( F ( V Cycles  E ) P  <->  ( F
( V Paths  E ) P  /\  ( P ` 
0 )  =  ( P `  ( # `  F ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   0cc0 9481   #chash 12360   Paths cpath 24162   Cycles ccycl 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-fzo 11782  df-word 12495  df-wlk 24170  df-trail 24171  df-pth 24172  df-cycl 24175
This theorem is referenced by:  0cycl  24289  cyclispth  24291  cycliscrct  24292  cyclnspth  24293  cyclispthon  24295  usgrcyclnl1  24302  usgrcyclnl2  24303  3v3e3cycl1  24306  constr3cycl  24323  4cycl4v4e  24328  4cycl4dv4e  24330
  Copyright terms: Public domain W3C validator