MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrngd Structured version   Unicode version

Theorem iscrngd 16616
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isrngd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isrngd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isrngd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isrngd.g  |-  ( ph  ->  R  e.  Grp )
isrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isrngd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isrngd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isrngd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isrngd.u  |-  ( ph  ->  .1.  e.  B )
isrngd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isrngd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
iscrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
Assertion
Ref Expression
iscrngd  |-  ( ph  ->  R  e.  CRing )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y, z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem iscrngd
StepHypRef Expression
1 isrngd.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 isrngd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
3 isrngd.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
4 isrngd.g . . 3  |-  ( ph  ->  R  e.  Grp )
5 isrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
6 isrngd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
7 isrngd.d . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
8 isrngd.e . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
9 isrngd.u . . 3  |-  ( ph  ->  .1.  e.  B )
10 isrngd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
11 isrngd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isrngd 16615 . 2  |-  ( ph  ->  R  e.  Ring )
13 eqid 2433 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
14 eqid 2433 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
1513, 14mgpbas 16571 . . . 4  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
161, 15syl6eq 2481 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
17 eqid 2433 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1813, 17mgpplusg 16569 . . . 4  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
193, 18syl6eq 2481 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
2016, 19, 5, 6, 9, 10, 11ismndd 15427 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
21 iscrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
2216, 19, 20, 21iscmnd 16269 . 2  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2313iscrng 16588 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
2412, 22, 23sylanbrc 657 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   ` cfv 5406  (class class class)co 6080   Basecbs 14157   +g cplusg 14221   .rcmulr 14222   Grpcgrp 15393  CMndccmn 16257  mulGrpcmgp 16565   Ringcrg 16577   CRingccrg 16578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-mnd 15398  df-cmn 16259  df-mgp 16566  df-rng 16580  df-cring 16581
This theorem is referenced by:  cncrng  17681
  Copyright terms: Public domain W3C validator