MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrngd Unicode version

Theorem iscrngd 15654
Description: Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
isrngd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isrngd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isrngd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isrngd.g  |-  ( ph  ->  R  e.  Grp )
isrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
isrngd.a  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
isrngd.d  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
isrngd.e  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
isrngd.u  |-  ( ph  ->  .1.  e.  B )
isrngd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
isrngd.h  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
iscrngd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
Assertion
Ref Expression
iscrngd  |-  ( ph  ->  R  e.  CRing )
Distinct variable groups:    x,  .1.    x, y, z, B    ph, x, y, z    x, R, y, z
Allowed substitution hints:    .+ ( x, y, z)    .x. ( x, y, z)    .1. ( y, z)

Proof of Theorem iscrngd
StepHypRef Expression
1 isrngd.b . . 3  |-  ( ph  ->  B  =  ( Base `  R ) )
2 isrngd.p . . 3  |-  ( ph  ->  .+  =  ( +g  `  R ) )
3 isrngd.t . . 3  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
4 isrngd.g . . 3  |-  ( ph  ->  R  e.  Grp )
5 isrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  e.  B
)
6 isrngd.a . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .x.  y )  .x.  z
)  =  ( x 
.x.  ( y  .x.  z ) ) )
7 isrngd.d . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( x  .x.  (
y  .+  z )
)  =  ( ( x  .x.  y ) 
.+  ( x  .x.  z ) ) )
8 isrngd.e . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
9 isrngd.u . . 3  |-  ( ph  ->  .1.  e.  B )
10 isrngd.i . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .1.  .x.  x )  =  x )
11 isrngd.h . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .x.  .1.  )  =  x )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11isrngd 15653 . 2  |-  ( ph  ->  R  e.  Ring )
13 eqid 2404 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
14 eqid 2404 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
1513, 14mgpbas 15609 . . . 4  |-  ( Base `  R )  =  (
Base `  (mulGrp `  R
) )
161, 15syl6eq 2452 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  R )
) )
17 eqid 2404 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1813, 17mgpplusg 15607 . . . 4  |-  ( .r
`  R )  =  ( +g  `  (mulGrp `  R ) )
193, 18syl6eq 2452 . . 3  |-  ( ph  ->  .x.  =  ( +g  `  (mulGrp `  R )
) )
2016, 19, 5, 6, 9, 10, 11ismndd 14674 . . 3  |-  ( ph  ->  (mulGrp `  R )  e.  Mnd )
21 iscrngd.c . . 3  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .x.  y )  =  ( y  .x.  x ) )
2216, 19, 20, 21iscmnd 15379 . 2  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2313iscrng 15626 . 2  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  (mulGrp `  R )  e. CMnd ) )
2412, 22, 23sylanbrc 646 1  |-  ( ph  ->  R  e.  CRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .rcmulr 13485   Grpcgrp 14640  CMndccmn 15367  mulGrpcmgp 15603   Ringcrg 15615   CRingccrg 15616
This theorem is referenced by:  cncrng  16677
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-mnd 14645  df-cmn 15369  df-mgp 15604  df-rng 15618  df-cring 15619
  Copyright terms: Public domain W3C validator