MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp4 Structured version   Unicode version

Theorem iscnp4 19637
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
iscnp4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
Distinct variable groups:    x, y, F    x, J, y    x, K, y    x, P, y   
x, X, y    x, Y, y

Proof of Theorem iscnp4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cnpf2 19624 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
213expa 1197 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
323adantl3 1155 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
4 simplr 755 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
5 simpll2 1037 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  K  e.  (TopOn `  Y
) )
6 topontop 19300 . . . . . . . . 9  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
75, 6syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  K  e.  Top )
8 eqid 2443 . . . . . . . . . 10  |-  U. K  =  U. K
98neii1 19480 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  y  e.  ( ( nei `  K ) `  { ( F `  P ) } ) )  ->  y  C_  U. K )
107, 9sylancom 667 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
y  C_  U. K )
118ntropn 19423 . . . . . . . 8  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( ( int `  K ) `  y
)  e.  K )
127, 10, 11syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( int `  K
) `  y )  e.  K )
13 simpr 461 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) )
143adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  F : X --> Y )
15 simpll3 1038 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  P  e.  X )
1614, 15ffvelrnd 6017 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  Y )
17 toponuni 19301 . . . . . . . . . . . . 13  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
185, 17syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  Y  =  U. K )
1916, 18eleqtrd 2533 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  U. K
)
2019snssd 4160 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  { ( F `  P ) }  C_  U. K )
218neiint 19478 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  { ( F `  P
) }  C_  U. K  /\  y  C_  U. K
)  ->  ( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  <->  { ( F `  P ) }  C_  ( ( int `  K ) `  y
) ) )
227, 20, 10, 21syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  <->  { ( F `  P ) }  C_  ( ( int `  K ) `  y
) ) )
2313, 22mpbid 210 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  { ( F `  P ) }  C_  ( ( int `  K
) `  y )
)
24 fvex 5866 . . . . . . . . 9  |-  ( F `
 P )  e. 
_V
2524snss 4139 . . . . . . . 8  |-  ( ( F `  P )  e.  ( ( int `  K ) `  y
)  <->  { ( F `  P ) }  C_  ( ( int `  K
) `  y )
)
2623, 25sylibr 212 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( F `  P
)  e.  ( ( int `  K ) `
 y ) )
27 cnpimaex 19630 . . . . . . 7  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  ( ( int `  K
) `  y )  e.  K  /\  ( F `  P )  e.  ( ( int `  K
) `  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  ( ( int `  K
) `  y )
) )
284, 12, 26, 27syl3anc 1229 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) )
29 simpl1 1000 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X ) )
3029ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  J  e.  (TopOn `  X ) )
31 topontop 19300 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3230, 31syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  J  e.  Top )
33 simprl 756 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  x  e.  J )
34 simprrl 765 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  P  e.  x )
35 opnneip 19493 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  x  e.  J  /\  P  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { P }
) )
3632, 33, 34, 35syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  x  e.  ( ( nei `  J
) `  { P } ) )
37 simprrr 766 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( F " x )  C_  (
( int `  K
) `  y )
)
388ntrss2 19431 . . . . . . . . . . . 12  |-  ( ( K  e.  Top  /\  y  C_  U. K )  ->  ( ( int `  K ) `  y
)  C_  y )
397, 10, 38syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( int `  K
) `  y )  C_  y )
4039adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( ( int `  K ) `  y )  C_  y
)
4137, 40sstrd 3499 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( F " x )  C_  y
)
4236, 41jca 532 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  (
( J  CnP  K
) `  P )
)  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  /\  ( x  e.  J  /\  ( P  e.  x  /\  ( F " x
)  C_  ( ( int `  K ) `  y ) ) ) )  ->  ( x  e.  ( ( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )
4342ex 434 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( ( x  e.  J  /\  ( P  e.  x  /\  ( F " x )  C_  ( ( int `  K
) `  y )
) )  ->  (
x  e.  ( ( nei `  J ) `
 { P }
)  /\  ( F " x )  C_  y
) ) )
4443reximdv2 2914 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  -> 
( E. x  e.  J  ( P  e.  x  /\  ( F
" x )  C_  ( ( int `  K
) `  y )
)  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) )
4528, 44mpd 15 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )  ->  E. x  e.  (
( nei `  J
) `  { P } ) ( F
" x )  C_  y )
4645ralrimiva 2857 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )
473, 46jca 532 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) )
4847ex 434 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( F : X
--> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
49 simpll2 1037 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  K  e.  (TopOn `  Y ) )
5049, 6syl 16 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  K  e.  Top )
51 simprl 756 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  y  e.  K )
52 simprr 757 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( F `  P )  e.  y )
53 opnneip 19493 . . . . . . . . . 10  |-  ( ( K  e.  Top  /\  y  e.  K  /\  ( F `  P )  e.  y )  -> 
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) )
5450, 51, 52, 53syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) )
55 simpl1 1000 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  J  e.  (TopOn `  X )
)
5655ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  J  e.  (TopOn `  X
) )
5756, 31syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  J  e.  Top )
58 simprl 756 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  x  e.  ( ( nei `  J ) `  { P } ) )
59 eqid 2443 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
6059neii1 19480 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  { P } ) )  ->  x  C_  U. J
)
6157, 58, 60syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  x  C_  U. J )
6259ntropn 19423 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( int `  J ) `  x
)  e.  J )
6357, 61, 62syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( ( int `  J
) `  x )  e.  J )
64 simpll3 1038 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  P  e.  X )
6564adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  X )
66 toponuni 19301 . . . . . . . . . . . . . . . . 17  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
6756, 66syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  X  =  U. J )
6865, 67eleqtrd 2533 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  U. J )
6968snssd 4160 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  { P }  C_  U. J
)
7059neiint 19478 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  { P }  C_  U. J  /\  x  C_  U. J
)  ->  ( x  e.  ( ( nei `  J
) `  { P } )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7157, 69, 61, 70syl3anc 1229 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( x  e.  ( ( nei `  J
) `  { P } )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7258, 71mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  { P }  C_  (
( int `  J
) `  x )
)
73 snssg 4148 . . . . . . . . . . . . 13  |-  ( P  e.  X  ->  ( P  e.  ( ( int `  J ) `  x )  <->  { P }  C_  ( ( int `  J ) `  x
) ) )
7465, 73syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( P  e.  ( ( int `  J
) `  x )  <->  { P }  C_  (
( int `  J
) `  x )
) )
7572, 74mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  P  e.  ( ( int `  J ) `  x ) )
7659ntrss2 19431 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  x  C_  U. J )  ->  ( ( int `  J ) `  x
)  C_  x )
7757, 61, 76syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( ( int `  J
) `  x )  C_  x )
78 imass2 5362 . . . . . . . . . . . . 13  |-  ( ( ( int `  J
) `  x )  C_  x  ->  ( F " ( ( int `  J
) `  x )
)  C_  ( F " x ) )
7977, 78syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " (
( int `  J
) `  x )
)  C_  ( F " x ) )
80 simprr 757 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " x
)  C_  y )
8179, 80sstrd 3499 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  -> 
( F " (
( int `  J
) `  x )
)  C_  y )
82 eleq2 2516 . . . . . . . . . . . . 13  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( P  e.  z  <->  P  e.  (
( int `  J
) `  x )
) )
83 imaeq2 5323 . . . . . . . . . . . . . 14  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( F " z )  =  ( F " ( ( int `  J ) `
 x ) ) )
8483sseq1d 3516 . . . . . . . . . . . . 13  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( ( F " z )  C_  y 
<->  ( F " (
( int `  J
) `  x )
)  C_  y )
)
8582, 84anbi12d 710 . . . . . . . . . . . 12  |-  ( z  =  ( ( int `  J ) `  x
)  ->  ( ( P  e.  z  /\  ( F " z ) 
C_  y )  <->  ( P  e.  ( ( int `  J
) `  x )  /\  ( F " (
( int `  J
) `  x )
)  C_  y )
) )
8685rspcev 3196 . . . . . . . . . . 11  |-  ( ( ( ( int `  J
) `  x )  e.  J  /\  ( P  e.  ( ( int `  J ) `  x )  /\  ( F " ( ( int `  J ) `  x
) )  C_  y
) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) )
8763, 75, 81, 86syl12anc 1227 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `
 P )  e.  y ) )  /\  ( x  e.  (
( nei `  J
) `  { P } )  /\  ( F " x )  C_  y ) )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
)
8887rexlimdvaa 2936 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( E. x  e.  ( ( nei `  J ) `  { P } ) ( F " x ) 
C_  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
8954, 88embantd 54 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X )  /\  F : X --> Y )  /\  ( y  e.  K  /\  ( F `  P
)  e.  y ) )  ->  ( (
y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) )
9089ex 434 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  K  /\  ( F `  P
)  e.  y )  ->  ( ( y  e.  ( ( nei `  K ) `  {
( F `  P
) } )  ->  E. x  e.  (
( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) ) )
9190com23 78 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  (
( y  e.  K  /\  ( F `  P
)  e.  y )  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) )
9291exp4a 606 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  (
( y  e.  ( ( nei `  K
) `  { ( F `  P ) } )  ->  E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  (
y  e.  K  -> 
( ( F `  P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) ) )
9392ralimdv2 2850 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  /\  F : X
--> Y )  ->  ( A. y  e.  (
( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) )
9493imdistanda 693 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z
)  C_  y )
) ) ) )
95 iscnp 19611 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. z  e.  J  ( P  e.  z  /\  ( F " z )  C_  y ) ) ) ) )
9694, 95sylibrd 234 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( F : X --> Y  /\  A. y  e.  ( ( nei `  K ) `
 { ( F `
 P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y )  ->  F  e.  ( ( J  CnP  K ) `  P ) ) )
9748, 96impbid 191 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  ( ( nei `  K
) `  { ( F `  P ) } ) E. x  e.  ( ( nei `  J
) `  { P } ) ( F
" x )  C_  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   E.wrex 2794    C_ wss 3461   {csn 4014   U.cuni 4234   "cima 4992   -->wf 5574   ` cfv 5578  (class class class)co 6281   Topctop 19267  TopOnctopon 19268   intcnt 19391   neicnei 19471    CnP ccnp 19599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-map 7424  df-top 19272  df-topon 19275  df-ntr 19394  df-nei 19472  df-cnp 19602
This theorem is referenced by:  cnnei  19656
  Copyright terms: Public domain W3C validator