MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Unicode version

Theorem iscnp2 19506
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscnp2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp2
Dummy variables  f 
g  j  k  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3790 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  -.  ( ( J  CnP  K ) `  P )  =  (/) )
2 df-ov 6285 . . . . . . . . . 10  |-  ( J  CnP  K )  =  (  CnP  `  <. J ,  K >. )
3 ndmfv 5888 . . . . . . . . . 10  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  (  CnP  ` 
<. J ,  K >. )  =  (/) )
42, 3syl5eq 2520 . . . . . . . . 9  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( J  CnP  K )  =  (/) )
54fveq1d 5866 . . . . . . . 8  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (
(/) `  P )
)
6 0fv 5897 . . . . . . . 8  |-  ( (/) `  P )  =  (/)
75, 6syl6eq 2524 . . . . . . 7  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (/) )
81, 7nsyl2 127 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  dom  CnP  )
9 df-cnp 19495 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
10 ssrab2 3585 . . . . . . . . . . 11  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j )
11 ovex 6307 . . . . . . . . . . . 12  |-  ( U. k  ^m  U. j )  e.  _V
1211elpw2 4611 . . . . . . . . . . 11  |-  ( { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) }  e.  ~P ( U. k  ^m  U. j
)  <->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j ) )
1310, 12mpbir 209 . . . . . . . . . 10  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
1413rgenw 2825 . . . . . . . . 9  |-  A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
15 eqid 2467 . . . . . . . . . 10  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )
1615fmpt 6040 . . . . . . . . 9  |-  ( A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )  <->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j ) )
1714, 16mpbi 208 . . . . . . . 8  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) : U. j
--> ~P ( U. k  ^m  U. j )
18 vex 3116 . . . . . . . . 9  |-  j  e. 
_V
1918uniex 6578 . . . . . . . 8  |-  U. j  e.  _V
2011pwex 4630 . . . . . . . 8  |-  ~P ( U. k  ^m  U. j
)  e.  _V
21 fex2 6736 . . . . . . . 8  |-  ( ( ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j )  /\  U. j  e.  _V  /\  ~P ( U. k  ^m  U. j )  e.  _V )  ->  ( x  e. 
U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  e.  _V )
2217, 19, 20, 21mp3an 1324 . . . . . . 7  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  e.  _V
239, 22dmmpt2 6851 . . . . . 6  |-  dom  CnP  =  ( Top  X.  Top )
248, 23syl6eleq 2565 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  ( Top 
X.  Top ) )
25 opelxp 5028 . . . . 5  |-  ( <. J ,  K >.  e.  ( Top  X.  Top ) 
<->  ( J  e.  Top  /\  K  e.  Top )
)
2624, 25sylib 196 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top ) )
2726simpld 459 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
2826simprd 463 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
29 elfvdm 5890 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  dom  ( J  CnP  K ) )
30 iscn.1 . . . . . . . . 9  |-  X  = 
U. J
3130toptopon 19201 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32 iscn.2 . . . . . . . . 9  |-  Y  = 
U. K
3332toptopon 19201 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
34 cnpfval 19501 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3531, 33, 34syl2anb 479 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  CnP  K
)  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3626, 35syl 16 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
3736dmeqd 5203 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
38 ovex 6307 . . . . . . . 8  |-  ( Y  ^m  X )  e. 
_V
3938rabex 4598 . . . . . . 7  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V
4039rgenw 2825 . . . . . 6  |-  A. x  e.  X  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  _V
41 dmmptg 5502 . . . . . 6  |-  ( A. x  e.  X  {
f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V  ->  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )  =  X )
4240, 41ax-mp 5 . . . . 5  |-  dom  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  =  X
4337, 42syl6eq 2524 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  X )
4429, 43eleqtrd 2557 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X )
4527, 28, 443jca 1176 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X ) )
46 biid 236 . . 3  |-  ( P  e.  X  <->  P  e.  X )
47 iscnp 19504 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
4831, 33, 46, 47syl3anb 1271 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
4945, 48biadan2 642 1  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   <.cop 4033   U.cuni 4245    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   "cima 5002   -->wf 5582   ` cfv 5586  (class class class)co 6282    ^m cmap 7417   Topctop 19161  TopOnctopon 19162    CnP ccnp 19492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-map 7419  df-top 19166  df-topon 19169  df-cnp 19495
This theorem is referenced by:  cnptop1  19509  cnptop2  19510  cnprcl  19512  cnpf  19514  cnpimaex  19523  cnpnei  19531  cnpco  19534  cnprest  19556  cnprest2  19557
  Copyright terms: Public domain W3C validator