MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Unicode version

Theorem iscnp2 18968
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscnp2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp2
Dummy variables  f 
g  j  k  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3743 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  -.  ( ( J  CnP  K ) `  P )  =  (/) )
2 df-ov 6196 . . . . . . . . . 10  |-  ( J  CnP  K )  =  (  CnP  `  <. J ,  K >. )
3 ndmfv 5816 . . . . . . . . . 10  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  (  CnP  ` 
<. J ,  K >. )  =  (/) )
42, 3syl5eq 2504 . . . . . . . . 9  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( J  CnP  K )  =  (/) )
54fveq1d 5794 . . . . . . . 8  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (
(/) `  P )
)
6 0fv 5825 . . . . . . . 8  |-  ( (/) `  P )  =  (/)
75, 6syl6eq 2508 . . . . . . 7  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (/) )
81, 7nsyl2 127 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  dom  CnP  )
9 df-cnp 18957 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
10 ssrab2 3538 . . . . . . . . . . 11  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j )
11 ovex 6218 . . . . . . . . . . . 12  |-  ( U. k  ^m  U. j )  e.  _V
1211elpw2 4557 . . . . . . . . . . 11  |-  ( { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) }  e.  ~P ( U. k  ^m  U. j
)  <->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j ) )
1310, 12mpbir 209 . . . . . . . . . 10  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
1413rgenw 2894 . . . . . . . . 9  |-  A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
15 eqid 2451 . . . . . . . . . 10  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )
1615fmpt 5966 . . . . . . . . 9  |-  ( A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )  <->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j ) )
1714, 16mpbi 208 . . . . . . . 8  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) : U. j
--> ~P ( U. k  ^m  U. j )
18 vex 3074 . . . . . . . . 9  |-  j  e. 
_V
1918uniex 6479 . . . . . . . 8  |-  U. j  e.  _V
2011pwex 4576 . . . . . . . 8  |-  ~P ( U. k  ^m  U. j
)  e.  _V
21 fex2 6635 . . . . . . . 8  |-  ( ( ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j )  /\  U. j  e.  _V  /\  ~P ( U. k  ^m  U. j )  e.  _V )  ->  ( x  e. 
U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  e.  _V )
2217, 19, 20, 21mp3an 1315 . . . . . . 7  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  e.  _V
239, 22dmmpt2 6747 . . . . . 6  |-  dom  CnP  =  ( Top  X.  Top )
248, 23syl6eleq 2549 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  ( Top 
X.  Top ) )
25 opelxp 4970 . . . . 5  |-  ( <. J ,  K >.  e.  ( Top  X.  Top ) 
<->  ( J  e.  Top  /\  K  e.  Top )
)
2624, 25sylib 196 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top ) )
2726simpld 459 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
2826simprd 463 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
29 elfvdm 5818 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  dom  ( J  CnP  K ) )
30 iscn.1 . . . . . . . . 9  |-  X  = 
U. J
3130toptopon 18663 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32 iscn.2 . . . . . . . . 9  |-  Y  = 
U. K
3332toptopon 18663 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
34 cnpfval 18963 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3531, 33, 34syl2anb 479 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  CnP  K
)  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3626, 35syl 16 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
3736dmeqd 5143 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
38 ovex 6218 . . . . . . . 8  |-  ( Y  ^m  X )  e. 
_V
3938rabex 4544 . . . . . . 7  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V
4039rgenw 2894 . . . . . 6  |-  A. x  e.  X  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  _V
41 dmmptg 5436 . . . . . 6  |-  ( A. x  e.  X  {
f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V  ->  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )  =  X )
4240, 41ax-mp 5 . . . . 5  |-  dom  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  =  X
4337, 42syl6eq 2508 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  X )
4429, 43eleqtrd 2541 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X )
4527, 28, 443jca 1168 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X ) )
46 biid 236 . . 3  |-  ( P  e.  X  <->  P  e.  X )
47 iscnp 18966 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
4831, 33, 46, 47syl3anb 1262 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
4945, 48biadan2 642 1  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   {crab 2799   _Vcvv 3071    C_ wss 3429   (/)c0 3738   ~Pcpw 3961   <.cop 3984   U.cuni 4192    |-> cmpt 4451    X. cxp 4939   dom cdm 4941   "cima 4944   -->wf 5515   ` cfv 5519  (class class class)co 6193    ^m cmap 7317   Topctop 18623  TopOnctopon 18624    CnP ccnp 18954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-map 7319  df-top 18628  df-topon 18631  df-cnp 18957
This theorem is referenced by:  cnptop1  18971  cnptop2  18972  cnprcl  18974  cnpf  18976  cnpimaex  18985  cnpnei  18993  cnpco  18996  cnprest  19018  cnprest2  19019
  Copyright terms: Public domain W3C validator