MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp2 Structured version   Unicode version

Theorem iscnp2 19866
Description: The predicate " F is a continuous function from topology  J to topology  K at point  P." Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscnp2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, F, y   
x, P, y    x, Y, y

Proof of Theorem iscnp2
Dummy variables  f 
g  j  k  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3798 . . . . . . 7  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  -.  ( ( J  CnP  K ) `  P )  =  (/) )
2 df-ov 6299 . . . . . . . . . 10  |-  ( J  CnP  K )  =  (  CnP  `  <. J ,  K >. )
3 ndmfv 5896 . . . . . . . . . 10  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  (  CnP  ` 
<. J ,  K >. )  =  (/) )
42, 3syl5eq 2510 . . . . . . . . 9  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( J  CnP  K )  =  (/) )
54fveq1d 5874 . . . . . . . 8  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (
(/) `  P )
)
6 0fv 5905 . . . . . . . 8  |-  ( (/) `  P )  =  (/)
75, 6syl6eq 2514 . . . . . . 7  |-  ( -. 
<. J ,  K >.  e. 
dom  CnP  ->  ( ( J  CnP  K ) `  P )  =  (/) )
81, 7nsyl2 127 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  dom  CnP  )
9 df-cnp 19855 . . . . . . 7  |-  CnP  =  ( j  e.  Top ,  k  e.  Top  |->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) )
10 ssrab2 3581 . . . . . . . . . . 11  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j )
11 ovex 6324 . . . . . . . . . . . 12  |-  ( U. k  ^m  U. j )  e.  _V
1211elpw2 4620 . . . . . . . . . . 11  |-  ( { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) }  e.  ~P ( U. k  ^m  U. j
)  <->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  C_  ( U. k  ^m  U. j ) )
1310, 12mpbir 209 . . . . . . . . . 10  |-  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
1413rgenw 2818 . . . . . . . . 9  |-  A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )
15 eqid 2457 . . . . . . . . . 10  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  =  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } )
1615fmpt 6053 . . . . . . . . 9  |-  ( A. x  e.  U. j { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) }  e.  ~P ( U. k  ^m  U. j )  <->  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j ) )
1714, 16mpbi 208 . . . . . . . 8  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } ) : U. j
--> ~P ( U. k  ^m  U. j )
18 vex 3112 . . . . . . . . 9  |-  j  e. 
_V
1918uniex 6595 . . . . . . . 8  |-  U. j  e.  _V
2011pwex 4639 . . . . . . . 8  |-  ~P ( U. k  ^m  U. j
)  e.  _V
21 fex2 6754 . . . . . . . 8  |-  ( ( ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  (
( f `  x
)  e.  y  ->  E. g  e.  j 
( x  e.  g  /\  ( f "
g )  C_  y
) ) } ) : U. j --> ~P ( U. k  ^m  U. j )  /\  U. j  e.  _V  /\  ~P ( U. k  ^m  U. j )  e.  _V )  ->  ( x  e. 
U. j  |->  { f  e.  ( U. k  ^m  U. j )  | 
A. y  e.  k  ( ( f `  x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  ( f "
g )  C_  y
) ) } )  e.  _V )
2217, 19, 20, 21mp3an 1324 . . . . . . 7  |-  ( x  e.  U. j  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( ( f `
 x )  e.  y  ->  E. g  e.  j  ( x  e.  g  /\  (
f " g ) 
C_  y ) ) } )  e.  _V
239, 22dmmpt2 6869 . . . . . 6  |-  dom  CnP  =  ( Top  X.  Top )
248, 23syl6eleq 2555 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  <. J ,  K >.  e.  ( Top 
X.  Top ) )
25 opelxp 5038 . . . . 5  |-  ( <. J ,  K >.  e.  ( Top  X.  Top ) 
<->  ( J  e.  Top  /\  K  e.  Top )
)
2624, 25sylib 196 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top ) )
2726simpld 459 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  J  e.  Top )
2826simprd 463 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  K  e.  Top )
29 elfvdm 5898 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  dom  ( J  CnP  K ) )
30 iscn.1 . . . . . . . . 9  |-  X  = 
U. J
3130toptopon 19560 . . . . . . . 8  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
32 iscn.2 . . . . . . . . 9  |-  Y  = 
U. K
3332toptopon 19560 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
34 cnpfval 19861 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3531, 33, 34syl2anb 479 . . . . . . 7  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  CnP  K
)  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
3626, 35syl 16 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  CnP  K )  =  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  ( ( f `
 x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } ) )
3736dmeqd 5215 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } ) )
38 ovex 6324 . . . . . . . 8  |-  ( Y  ^m  X )  e. 
_V
3938rabex 4607 . . . . . . 7  |-  { f  e.  ( Y  ^m  X )  |  A. w  e.  K  (
( f `  x
)  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V
4039rgenw 2818 . . . . . 6  |-  A. x  e.  X  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) }  e.  _V
41 dmmptg 5510 . . . . . 6  |-  ( A. x  e.  X  {
f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) }  e.  _V  ->  dom  ( x  e.  X  |->  { f  e.  ( Y  ^m  X
)  |  A. w  e.  K  ( (
f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  (
f " v ) 
C_  w ) ) } )  =  X )
4240, 41ax-mp 5 . . . . 5  |-  dom  (
x  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. w  e.  K  ( ( f `  x )  e.  w  ->  E. v  e.  J  ( x  e.  v  /\  ( f " v
)  C_  w )
) } )  =  X
4337, 42syl6eq 2514 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  dom  ( J  CnP  K )  =  X )
4429, 43eleqtrd 2547 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  P  e.  X )
4527, 28, 443jca 1176 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X ) )
46 biid 236 . . 3  |-  ( P  e.  X  <->  P  e.  X )
47 iscnp 19864 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
4831, 33, 46, 47syl3anb 1271 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
4945, 48biadan2 642 1  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e.  X )  /\  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    C_ wss 3471   (/)c0 3793   ~Pcpw 4015   <.cop 4038   U.cuni 4251    |-> cmpt 4515    X. cxp 5006   dom cdm 5008   "cima 5011   -->wf 5590   ` cfv 5594  (class class class)co 6296    ^m cmap 7438   Topctop 19520  TopOnctopon 19521    CnP ccnp 19852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-top 19525  df-topon 19528  df-cnp 19855
This theorem is referenced by:  cnptop1  19869  cnptop2  19870  cnprcl  19872  cnpf  19874  cnpimaex  19883  cnpnei  19891  cnpco  19894  cnprest  19916  cnprest2  19917
  Copyright terms: Public domain W3C validator