MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscncl Unicode version

Theorem iscncl 16830
Description: A definition of a continuous function using closed sets. Theorem 1 (d) of [BourbakiTop1] p. I.9. (Contributed by FL, 19-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscncl  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
Distinct variable groups:    y, F    y, J    y, K    y, X    y, Y

Proof of Theorem iscncl
StepHypRef Expression
1 cnf2 16811 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : X --> Y )
213expa 1156 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  F : X --> Y )
3 cnclima 16829 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  y  e.  ( Clsd `  K ) )  -> 
( `' F "
y )  e.  (
Clsd `  J )
)
43ralrimiva 2588 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
)
54adantl 454 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
)
62, 5jca 520 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )
7 simprl 735 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  F : X --> Y )
8 toponuni 16497 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
98ad3antrrr 713 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  X  =  U. J
)
10 simplrl 739 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  F : X --> Y )
11 fimacnv 5509 . . . . . . . . . . 11  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
1211eqcomd 2258 . . . . . . . . . 10  |-  ( F : X --> Y  ->  X  =  ( `' F " Y ) )
1310, 12syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  X  =  ( `' F " Y ) )
149, 13eqtr3d 2287 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  U. J  =  ( `' F " Y ) )
1514difeq1d 3210 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  =  ( ( `' F " Y )  \  ( `' F " x ) ) )
16 ffun 5248 . . . . . . . . 9  |-  ( F : X --> Y  ->  Fun  F )
17 funcnvcnv 5165 . . . . . . . . 9  |-  ( Fun 
F  ->  Fun  `' `' F )
1810, 16, 173syl 20 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  Fun  `' `' F
)
19 imadif 5184 . . . . . . . 8  |-  ( Fun  `' `' F  ->  ( `' F " ( Y 
\  x ) )  =  ( ( `' F " Y ) 
\  ( `' F " x ) ) )
2018, 19syl 17 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
( Y  \  x
) )  =  ( ( `' F " Y )  \  ( `' F " x ) ) )
2115, 20eqtr4d 2288 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  =  ( `' F "
( Y  \  x
) ) )
22 simpllr 738 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  K  e.  (TopOn `  Y ) )
23 toponuni 16497 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  Y  =  U. K )
2422, 23syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  Y  =  U. K
)
2524difeq1d 3210 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( Y  \  x
)  =  ( U. K  \  x ) )
26 topontop 16496 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2722, 26syl 17 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  K  e.  Top )
28 eqid 2253 . . . . . . . . . 10  |-  U. K  =  U. K
2928opncld 16602 . . . . . . . . 9  |-  ( ( K  e.  Top  /\  x  e.  K )  ->  ( U. K  \  x )  e.  (
Clsd `  K )
)
3027, 29sylancom 651 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. K  \  x )  e.  (
Clsd `  K )
)
3125, 30eqeltrd 2327 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( Y  \  x
)  e.  ( Clsd `  K ) )
32 simplrr 740 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  A. y  e.  (
Clsd `  K )
( `' F "
y )  e.  (
Clsd `  J )
)
33 imaeq2 4915 . . . . . . . . 9  |-  ( y  =  ( Y  \  x )  ->  ( `' F " y )  =  ( `' F " ( Y  \  x
) ) )
3433eleq1d 2319 . . . . . . . 8  |-  ( y  =  ( Y  \  x )  ->  (
( `' F "
y )  e.  (
Clsd `  J )  <->  ( `' F " ( Y 
\  x ) )  e.  ( Clsd `  J
) ) )
3534rcla4v 2817 . . . . . . 7  |-  ( ( Y  \  x )  e.  ( Clsd `  K
)  ->  ( A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
)  ->  ( `' F " ( Y  \  x ) )  e.  ( Clsd `  J
) ) )
3631, 32, 35sylc 58 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
( Y  \  x
) )  e.  (
Clsd `  J )
)
3721, 36eqeltrd 2327 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( U. J  \ 
( `' F "
x ) )  e.  ( Clsd `  J
) )
38 topontop 16496 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
3938ad3antrrr 713 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  J  e.  Top )
40 cnvimass 4940 . . . . . . . 8  |-  ( `' F " x ) 
C_  dom  F
41 fdm 5250 . . . . . . . . 9  |-  ( F : X --> Y  ->  dom  F  =  X )
4210, 41syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  dom  F  =  X )
4340, 42syl5sseq 3147 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  C_  X
)
4443, 9sseqtrd 3135 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  C_  U. J
)
45 eqid 2253 . . . . . . 7  |-  U. J  =  U. J
4645isopn2 16601 . . . . . 6  |-  ( ( J  e.  Top  /\  ( `' F " x ) 
C_  U. J )  -> 
( ( `' F " x )  e.  J  <->  ( U. J  \  ( `' F " x ) )  e.  ( Clsd `  J ) ) )
4739, 44, 46syl2anc 645 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( ( `' F " x )  e.  J  <->  ( U. J  \  ( `' F " x ) )  e.  ( Clsd `  J ) ) )
4837, 47mpbird 225 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
4948ralrimiva 2588 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  A. x  e.  K  ( `' F " x )  e.  J )
50 iscn 16797 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  K  ( `' F " x )  e.  J ) ) )
5150adantr 453 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  -> 
( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. x  e.  K  ( `' F " x )  e.  J
) ) )
527, 49, 51mpbir2and 893 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. y  e.  ( Clsd `  K ) ( `' F " y )  e.  ( Clsd `  J
) ) )  ->  F  e.  ( J  Cn  K ) )
536, 52impbida 808 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  ( Clsd `  K
) ( `' F " y )  e.  (
Clsd `  J )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2509    \ cdif 3075    C_ wss 3078   U.cuni 3727   `'ccnv 4579   dom cdm 4580   "cima 4583   Fun wfun 4586   -->wf 4588   ` cfv 4592  (class class class)co 5710   Topctop 16463  TopOnctopon 16464   Clsdccld 16585    Cn ccn 16786
This theorem is referenced by:  cncls2  16834  paste  16854  cmphaushmeo  17323  ubthlem1  21279  ubthlem2  21280
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-map 6660  df-top 16468  df-topon 16471  df-cld 16588  df-cn 16789
  Copyright terms: Public domain W3C validator