MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn2 Structured version   Unicode version

Theorem iscn2 20253
Description: The predicate " F is a continuous function from topology  J to topology  K." Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscn2  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Distinct variable groups:    y, J    y, K    y, X    y, F    y, Y

Proof of Theorem iscn2
Dummy variables  f 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 20242 . . 3  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
21elmpt2cl 6526 . 2  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
3 iscn.1 . . . 4  |-  X  = 
U. J
43toptopon 19947 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5 iscn.2 . . . 4  |-  Y  = 
U. K
65toptopon 19947 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
7 iscn 20250 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
84, 6, 7syl2anb 481 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J
) ) )
92, 8biadan2 646 1  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771   {crab 2775   U.cuni 4219   `'ccnv 4852   "cima 4856   -->wf 5597   ` cfv 5601  (class class class)co 6306    ^m cmap 7484   Topctop 19916  TopOnctopon 19917    Cn ccn 20239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-map 7486  df-top 19920  df-topon 19922  df-cn 20242
This theorem is referenced by:  cntop1  20255  cntop2  20256  cnf  20261  cnima  20280  cnco  20281  ptpjcn  20625
  Copyright terms: Public domain W3C validator