MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn2 Structured version   Visualization version   Unicode version

Theorem iscn2 20331
Description: The predicate " F is a continuous function from topology  J to topology  K." Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
iscn.1  |-  X  = 
U. J
iscn.2  |-  Y  = 
U. K
Assertion
Ref Expression
iscn2  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Distinct variable groups:    y, J    y, K    y, X    y, F    y, Y

Proof of Theorem iscn2
Dummy variables  f 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cn 20320 . . 3  |-  Cn  =  ( j  e.  Top ,  k  e.  Top  |->  { f  e.  ( U. k  ^m  U. j )  |  A. y  e.  k  ( `' f
" y )  e.  j } )
21elmpt2cl 6530 . 2  |-  ( F  e.  ( J  Cn  K )  ->  ( J  e.  Top  /\  K  e.  Top ) )
3 iscn.1 . . . 4  |-  X  = 
U. J
43toptopon 20025 . . 3  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
5 iscn.2 . . . 4  |-  Y  = 
U. K
65toptopon 20025 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
7 iscn 20328 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
84, 6, 7syl2anb 487 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J
) ) )
92, 8biadan2 654 1  |-  ( F  e.  ( J  Cn  K )  <->  ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   U.cuni 4190   `'ccnv 4838   "cima 4842   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   Topctop 19994  TopOnctopon 19995    Cn ccn 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-map 7492  df-top 19998  df-topon 20000  df-cn 20320
This theorem is referenced by:  cntop1  20333  cntop2  20334  cnf  20339  cnima  20358  cnco  20359  ptpjcn  20703
  Copyright terms: Public domain W3C validator