MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Unicode version

Theorem iscms 20856
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1  |-  X  =  ( Base `  M
)
iscms.2  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
iscms  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )

Proof of Theorem iscms
Dummy variables  w  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5701 . . . 4  |-  ( Base `  w )  e.  _V
21a1i 11 . . 3  |-  ( w  =  M  ->  ( Base `  w )  e. 
_V )
3 fveq2 5691 . . . . . . 7  |-  ( w  =  M  ->  ( dist `  w )  =  ( dist `  M
) )
43adantr 465 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( dist `  w )  =  ( dist `  M
) )
5 id 22 . . . . . . . 8  |-  ( b  =  ( Base `  w
)  ->  b  =  ( Base `  w )
)
6 fveq2 5691 . . . . . . . . 9  |-  ( w  =  M  ->  ( Base `  w )  =  ( Base `  M
) )
7 iscms.1 . . . . . . . . 9  |-  X  =  ( Base `  M
)
86, 7syl6eqr 2493 . . . . . . . 8  |-  ( w  =  M  ->  ( Base `  w )  =  X )
95, 8sylan9eqr 2497 . . . . . . 7  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
b  =  X )
109, 9xpeq12d 4865 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( b  X.  b
)  =  ( X  X.  X ) )
114, 10reseq12d 5111 . . . . 5  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  ( ( dist `  M
)  |`  ( X  X.  X ) ) )
12 iscms.2 . . . . 5  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
1311, 12syl6eqr 2493 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  D )
149fveq2d 5695 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( CMet `  b )  =  ( CMet `  X
) )
1513, 14eleq12d 2511 . . 3  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( ( dist `  w )  |`  (
b  X.  b ) )  e.  ( CMet `  b )  <->  D  e.  ( CMet `  X )
) )
162, 15sbcied 3223 . 2  |-  ( w  =  M  ->  ( [. ( Base `  w
)  /  b ]. ( ( dist `  w
)  |`  ( b  X.  b ) )  e.  ( CMet `  b
)  <->  D  e.  ( CMet `  X ) ) )
17 df-cms 20846 . 2  |- CMetSp  =  {
w  e.  MetSp  |  [. ( Base `  w )  /  b ]. (
( dist `  w )  |`  ( b  X.  b
) )  e.  (
CMet `  b ) }
1816, 17elrab2 3119 1  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2972   [.wsbc 3186    X. cxp 4838    |` cres 4842   ` cfv 5418   Basecbs 14174   distcds 14247   MetSpcmt 19893   CMetcms 20765  CMetSpccms 20843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-nul 4421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-br 4293  df-opab 4351  df-xp 4846  df-res 4852  df-iota 5381  df-fv 5426  df-cms 20846
This theorem is referenced by:  cmscmet  20857  cmsms  20859  cmspropd  20860  cmsss  20861  cncms  20867
  Copyright terms: Public domain W3C validator