MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmp Structured version   Unicode version

Theorem iscmp 20058
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
iscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
iscmp  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable group:    y, z, J
Allowed substitution hints:    X( y, z)

Proof of Theorem iscmp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 4002 . . 3  |-  ( x  =  J  ->  ~P x  =  ~P J
)
2 unieq 4243 . . . . . 6  |-  ( x  =  J  ->  U. x  =  U. J )
3 iscmp.1 . . . . . 6  |-  X  = 
U. J
42, 3syl6eqr 2513 . . . . 5  |-  ( x  =  J  ->  U. x  =  X )
54eqeq1d 2456 . . . 4  |-  ( x  =  J  ->  ( U. x  =  U. y 
<->  X  =  U. y
) )
64eqeq1d 2456 . . . . 5  |-  ( x  =  J  ->  ( U. x  =  U. z 
<->  X  =  U. z
) )
76rexbidv 2965 . . . 4  |-  ( x  =  J  ->  ( E. z  e.  ( ~P y  i^i  Fin ) U. x  =  U. z 
<->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
85, 7imbi12d 318 . . 3  |-  ( x  =  J  ->  (
( U. x  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
91, 8raleqbidv 3065 . 2  |-  ( x  =  J  ->  ( A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
10 df-cmp 20057 . 2  |-  Comp  =  { x  e.  Top  | 
A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z ) }
119, 10elrab2 3256 1  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    i^i cin 3460   ~Pcpw 3999   U.cuni 4235   Fincfn 7509   Topctop 19564   Compccmp 20056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-in 3468  df-ss 3475  df-pw 4001  df-uni 4236  df-cmp 20057
This theorem is referenced by:  cmpcov  20059  cncmp  20062  fincmp  20063  cmptop  20065  cmpsub  20070  tgcmp  20071  uncmp  20073  sscmp  20075  cmpfi  20078  comppfsc  20202  txcmp  20313  alexsubb  20715  alexsubALT  20720  cmpcref  28091  onsucsuccmpi  30139  limsucncmpi  30141  heibor  30560
  Copyright terms: Public domain W3C validator