MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3 Structured version   Unicode version

Theorem iscmet3 22024
Description: The property " D is a complete metric" expressed in terms of functions on  NN (or any other upper integer set). Thus, we only have to look at functions on 
NN, and not all possible Cauchy filters, to determine completeness. (The proof uses countable choice.) (Contributed by NM, 18-Dec-2006.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
iscmet3.1  |-  Z  =  ( ZZ>= `  M )
iscmet3.2  |-  J  =  ( MetOpen `  D )
iscmet3.3  |-  ( ph  ->  M  e.  ZZ )
iscmet3.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
Assertion
Ref Expression
iscmet3  |-  ( ph  ->  ( D  e.  (
CMet `  X )  <->  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) ) )
Distinct variable groups:    D, f    f, X    f, J    f, Z    f, M    ph, f

Proof of Theorem iscmet3
Dummy variables  g 
i  j  k  n  s  t  u  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.2 . . . . 5  |-  J  =  ( MetOpen `  D )
21cmetcau 22020 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  f  e.  ( Cau `  D
) )  ->  f  e.  dom  ( ~~> t `  J ) )
32a1d 25 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  f  e.  ( Cau `  D
) )  ->  (
f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )
43ralrimiva 2818 . 2  |-  ( D  e.  ( CMet `  X
)  ->  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )
5 iscmet3.4 . . . . 5  |-  ( ph  ->  D  e.  ( Met `  X ) )
65adantr 463 . . . 4  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  ( Met `  X ) )
7 simpr 459 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  g  e.  (CauFil `  D ) )
8 1rp 11269 . . . . . . . . . . 11  |-  1  e.  RR+
9 rphalfcl 11290 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
108, 9ax-mp 5 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  RR+
11 rpexpcl 12229 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
1210, 11mpan 668 . . . . . . . . 9  |-  ( k  e.  ZZ  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
13 cfili 21999 . . . . . . . . 9  |-  ( ( g  e.  (CauFil `  D )  /\  (
( 1  /  2
) ^ k )  e.  RR+ )  ->  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
147, 12, 13syl2an 475 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  /\  k  e.  ZZ )  ->  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
1514ralrimiva 2818 . . . . . . 7  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  A. k  e.  ZZ  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  <  (
( 1  /  2
) ^ k ) )
16 vex 3062 . . . . . . . 8  |-  g  e. 
_V
17 znnen 14155 . . . . . . . . 9  |-  ZZ  ~~  NN
18 nnenom 12131 . . . . . . . . 9  |-  NN  ~~  om
1917, 18entri 7607 . . . . . . . 8  |-  ZZ  ~~  om
20 raleq 3004 . . . . . . . . 9  |-  ( t  =  ( s `  k )  ->  ( A. v  e.  t 
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2120raleqbi1dv 3012 . . . . . . . 8  |-  ( t  =  ( s `  k )  ->  ( A. u  e.  t  A. v  e.  t 
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2216, 19, 21axcc4 8851 . . . . . . 7  |-  ( A. k  e.  ZZ  E. t  e.  g  A. u  e.  t  A. v  e.  t  ( u D v )  < 
( ( 1  / 
2 ) ^ k
)  ->  E. s
( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
2315, 22syl 17 . . . . . 6  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  E. s
( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
24 iscmet3.3 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ZZ )
2524ad2antrr 724 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  M  e.  ZZ )
26 iscmet3.1 . . . . . . . . . . . 12  |-  Z  =  ( ZZ>= `  M )
2726uzenom 12116 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  Z  ~~  om )
28 endom 7580 . . . . . . . . . . 11  |-  ( Z 
~~  om  ->  Z  ~<_  om )
2925, 27, 283syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  Z  ~<_  om )
30 dfin5 3422 . . . . . . . . . . . . . . 15  |-  ( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `  n
) )  =  {
x  e.  (  _I 
`  X )  |  x  e.  |^|_ n  e.  ( M ... k
) ( s `  n ) }
31 fzn0 11754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( M ... k )  =/=  (/)  <->  k  e.  (
ZZ>= `  M ) )
3231biimpri 206 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( M ... k )  =/=  (/) )
3332, 26eleq2s 2510 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  Z  ->  ( M ... k )  =/=  (/) )
34 simprr 758 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  s : ZZ --> g )
35 elfzelz 11742 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( n  e.  ( M ... k )  ->  n  e.  ZZ )
36 ffvelrn 6007 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( s : ZZ --> g  /\  n  e.  ZZ )  ->  ( s `  n
)  e.  g )
3734, 35, 36syl2an 475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  n  e.  ( M ... k ) )  ->  ( s `  n )  e.  g )
38 metxmet 21129 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
395, 38syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  D  e.  ( *Met `  X ) )
4039adantr 463 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  ( *Met `  X
) )
41 simpl 455 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( g  e.  (CauFil `  D )  /\  s : ZZ --> g )  -> 
g  e.  (CauFil `  D ) )
42 cfilfil 21998 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( D  e.  ( *Met `  X )  /\  g  e.  (CauFil `  D ) )  -> 
g  e.  ( Fil `  X ) )
4340, 41, 42syl2an 475 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  g  e.  ( Fil `  X ) )
44 filelss 20645 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( g  e.  ( Fil `  X )  /\  (
s `  n )  e.  g )  ->  (
s `  n )  C_  X )
4543, 44sylan 469 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  ( s `  n )  e.  g )  ->  ( s `  n )  C_  X
)
4637, 45syldan 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  n  e.  ( M ... k ) )  ->  ( s `  n )  C_  X
)
4746ralrimiva 2818 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. n  e.  ( M ... k ) ( s `  n
)  C_  X )
48 r19.2z 3862 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( M ... k
)  =/=  (/)  /\  A. n  e.  ( M ... k ) ( s `
 n )  C_  X )  ->  E. n  e.  ( M ... k
) ( s `  n )  C_  X
)
4933, 47, 48syl2anr 476 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  E. n  e.  ( M ... k
) ( s `  n )  C_  X
)
50 iinss 4322 . . . . . . . . . . . . . . . . . 18  |-  ( E. n  e.  ( M ... k ) ( s `  n ) 
C_  X  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  X
)
5149, 50syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  X
)
526ad2antrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  D  e.  ( Met `  X ) )
53 elfvdm 5875 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  ( Met `  X
)  ->  X  e.  dom  Met )
54 fvi 5906 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  dom  Met  ->  (  _I  `  X )  =  X )
5552, 53, 543syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  (  _I  `  X )  =  X )
5651, 55sseqtr4d 3479 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  C_  (  _I  `  X ) )
57 dfss1 3644 . . . . . . . . . . . . . . . 16  |-  ( |^|_ n  e.  ( M ... k ) ( s `
 n )  C_  (  _I  `  X )  <-> 
( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `
 n ) )  =  |^|_ n  e.  ( M ... k ) ( s `  n
) )
5856, 57sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( (  _I  `  X )  i^i  |^|_ n  e.  ( M ... k ) ( s `  n ) )  =  |^|_ n  e.  ( M ... k
) ( s `  n ) )
5930, 58syl5eqr 2457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  { x  e.  (  _I  `  X
)  |  x  e. 
|^|_ n  e.  ( M ... k ) ( s `  n ) }  =  |^|_ n  e.  ( M ... k
) ( s `  n ) )
6043adantr 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  g  e.  ( Fil `  X ) )
6137ralrimiva 2818 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. n  e.  ( M ... k ) ( s `  n
)  e.  g )
6261adantr 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  A. n  e.  ( M ... k
) ( s `  n )  e.  g )
6333adantl 464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( M ... k )  =/=  (/) )
64 fzfid 12124 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( M ... k )  e.  Fin )
65 iinfi 7911 . . . . . . . . . . . . . . . . 17  |-  ( ( g  e.  ( Fil `  X )  /\  ( A. n  e.  ( M ... k ) ( s `  n )  e.  g  /\  ( M ... k )  =/=  (/)  /\  ( M ... k )  e.  Fin ) )  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  ( fi `  g ) )
6660, 62, 63, 64, 65syl13anc 1232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  ( fi `  g ) )
67 filfi 20652 . . . . . . . . . . . . . . . . 17  |-  ( g  e.  ( Fil `  X
)  ->  ( fi `  g )  =  g )
6860, 67syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  ( fi `  g )  =  g )
6966, 68eleqtrd 2492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  e.  g )
70 fileln0 20643 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  ( Fil `  X )  /\  |^|_ n  e.  ( M ... k ) ( s `
 n )  e.  g )  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  =/=  (/) )
7160, 69, 70syl2anc 659 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  |^|_ n  e.  ( M ... k
) ( s `  n )  =/=  (/) )
7259, 71eqnetrd 2696 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  { x  e.  (  _I  `  X
)  |  x  e. 
|^|_ n  e.  ( M ... k ) ( s `  n ) }  =/=  (/) )
73 rabn0 3759 . . . . . . . . . . . . 13  |-  ( { x  e.  (  _I 
`  X )  |  x  e.  |^|_ n  e.  ( M ... k
) ( s `  n ) }  =/=  (/)  <->  E. x  e.  (  _I 
`  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
7472, 73sylib 196 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  /\  k  e.  Z
)  ->  E. x  e.  (  _I  `  X
) x  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) )
7574ralrimiva 2818 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  s : ZZ --> g ) )  ->  A. k  e.  Z  E. x  e.  (  _I  `  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
7675adantrrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  A. k  e.  Z  E. x  e.  (  _I  `  X ) x  e.  |^|_ n  e.  ( M ... k ) ( s `  n
) )
77 fvex 5859 . . . . . . . . . . 11  |-  (  _I 
`  X )  e. 
_V
78 eleq1 2474 . . . . . . . . . . . 12  |-  ( x  =  ( f `  k )  ->  (
x  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  ( f `  k )  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) ) )
79 fvex 5859 . . . . . . . . . . . . 13  |-  ( f `
 k )  e. 
_V
80 eliin 4277 . . . . . . . . . . . . 13  |-  ( ( f `  k )  e.  _V  ->  (
( f `  k
)  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )
8179, 80ax-mp 5 . . . . . . . . . . . 12  |-  ( ( f `  k )  e.  |^|_ n  e.  ( M ... k ) ( s `  n
)  <->  A. n  e.  ( M ... k ) ( f `  k
)  e.  ( s `
 n ) )
8278, 81syl6bb 261 . . . . . . . . . . 11  |-  ( x  =  ( f `  k )  ->  (
x  e.  |^|_ n  e.  ( M ... k
) ( s `  n )  <->  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )
8377, 82axcc4dom 8853 . . . . . . . . . 10  |-  ( ( Z  ~<_  om  /\  A. k  e.  Z  E. x  e.  (  _I  `  X
) x  e.  |^|_ n  e.  ( M ... k ) ( s `
 n ) )  ->  E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )
8429, 76, 83syl2anc 659 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  ->  E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )
85 df-ral 2759 . . . . . . . . . . . . 13  |-  ( A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
)  <->  A. f ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) ) )
86 19.29 1704 . . . . . . . . . . . . 13  |-  ( ( A. f ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  ->  E. f ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )
8785, 86sylanb 470 . . . . . . . . . . . 12  |-  ( ( A. f  e.  ( Cau `  D ) ( f : Z --> X  ->  f  e.  dom  (
~~> t `  J ) )  /\  E. f
( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k
) ( f `  k )  e.  ( s `  n ) ) )  ->  E. f
( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )
8824ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  M  e.  ZZ )
895ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  D  e.  ( Met `  X ) )
90 simprrl 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f : Z --> (  _I  `  X ) )
91 feq3 5698 . . . . . . . . . . . . . . . . 17  |-  ( (  _I  `  X )  =  X  ->  (
f : Z --> (  _I 
`  X )  <->  f : Z
--> X ) )
9289, 53, 54, 914syl 19 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( f : Z --> (  _I  `  X )  <->  f : Z
--> X ) )
9390, 92mpbid 210 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f : Z --> X )
94 simplrr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
9594simprd 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. k  e.  ZZ  A. u  e.  ( s `
 k ) A. v  e.  ( s `  k ) ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
96 fveq2 5849 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  (
s `  k )  =  ( s `  i ) )
97 oveq2 6286 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
( 1  /  2
) ^ k )  =  ( ( 1  /  2 ) ^
i ) )
9897breq2d 4407 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  ( u D v )  < 
( ( 1  / 
2 ) ^ i
) ) )
9996, 98raleqbidv 3018 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  ( A. v  e.  (
s `  k )
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. v  e.  ( s `  i
) ( u D v )  <  (
( 1  /  2
) ^ i ) ) )
10096, 99raleqbidv 3018 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( A. u  e.  (
s `  k ) A. v  e.  (
s `  k )
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  A. u  e.  ( s `  i
) A. v  e.  ( s `  i
) ( u D v )  <  (
( 1  /  2
) ^ i ) ) )
101100cbvralv 3034 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k )  <->  A. i  e.  ZZ  A. u  e.  ( s `
 i ) A. v  e.  ( s `  i ) ( u D v )  < 
( ( 1  / 
2 ) ^ i
) )
10295, 101sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. i  e.  ZZ  A. u  e.  ( s `
 i ) A. v  e.  ( s `  i ) ( u D v )  < 
( ( 1  / 
2 ) ^ i
) )
103 simprrr 767 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `  k )  e.  ( s `  n ) )
104 fveq2 5849 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  j  ->  (
s `  n )  =  ( s `  j ) )
105104eleq2d 2472 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  (
( f `  k
)  e.  ( s `
 n )  <->  ( f `  k )  e.  ( s `  j ) ) )
106105cbvralv 3034 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
)  <->  A. j  e.  ( M ... k ) ( f `  k
)  e.  ( s `
 j ) )
107 oveq2 6286 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  ( M ... k )  =  ( M ... i
) )
108 fveq2 5849 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  i  ->  (
f `  k )  =  ( f `  i ) )
109108eleq1d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  i  ->  (
( f `  k
)  e.  ( s `
 j )  <->  ( f `  i )  e.  ( s `  j ) ) )
110107, 109raleqbidv 3018 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  i  ->  ( A. j  e.  ( M ... k ) ( f `  k )  e.  ( s `  j )  <->  A. j  e.  ( M ... i
) ( f `  i )  e.  ( s `  j ) ) )
111106, 110syl5bb 257 . . . . . . . . . . . . . . . . 17  |-  ( k  =  i  ->  ( A. n  e.  ( M ... k ) ( f `  k )  e.  ( s `  n )  <->  A. j  e.  ( M ... i
) ( f `  i )  e.  ( s `  j ) ) )
112111cbvralv 3034 . . . . . . . . . . . . . . . 16  |-  ( A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
)  <->  A. i  e.  Z  A. j  e.  ( M ... i ) ( f `  i )  e.  ( s `  j ) )
113103, 112sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  A. i  e.  Z  A. j  e.  ( M ... i ) ( f `  i )  e.  ( s `  j ) )
11489, 38syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  D  e.  ( *Met `  X
) )
115 simplrl 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  g  e.  (CauFil `  D ) )
116114, 115, 42syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  g  e.  ( Fil `  X ) )
11794simpld 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  s : ZZ --> g )
11826, 1, 88, 89, 93, 102, 113iscmet3lem1 22022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f  e.  ( Cau `  D ) )
119 simprl 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) ) )
120118, 93, 119mp2d 43 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  f  e.  dom  (
~~> t `  J ) )
12126, 1, 88, 89, 93, 102, 113, 116, 117, 120iscmet3lem2 22023 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) ) )  ->  ( J  fLim  g )  =/=  (/) )
122121ex 432 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( ( ( f  e.  ( Cau `  D
)  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
123122exlimdv 1745 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( E. f ( ( f  e.  ( Cau `  D )  ->  ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  /\  ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
12487, 123syl5 30 . . . . . . . . . . 11  |-  ( (
ph  /\  ( g  e.  (CauFil `  D )  /\  ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( ( A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) )  /\  E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) ) )  -> 
( J  fLim  g
)  =/=  (/) ) )
125124expdimp 435 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  ->  ( E. f ( f : Z --> (  _I  `  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) )  ->  ( J  fLim  g )  =/=  (/) ) )
126125an32s 805 . . . . . . . . 9  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( E. f ( f : Z --> (  _I 
`  X )  /\  A. k  e.  Z  A. n  e.  ( M ... k ) ( f `
 k )  e.  ( s `  n
) )  ->  ( J  fLim  g )  =/=  (/) ) )
12784, 126mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  (
g  e.  (CauFil `  D )  /\  (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) ) )  -> 
( J  fLim  g
)  =/=  (/) )
128127expr 613 . . . . . . 7  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( (
s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k ) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )  ->  ( J  fLim  g )  =/=  (/) ) )
129128exlimdv 1745 . . . . . 6  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( E. s ( s : ZZ --> g  /\  A. k  e.  ZZ  A. u  e.  ( s `  k
) A. v  e.  ( s `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )  ->  ( J  fLim  g )  =/=  (/) ) )
13023, 129mpd 15 . . . . 5  |-  ( ( ( ph  /\  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) )  /\  g  e.  (CauFil `  D )
)  ->  ( J  fLim  g )  =/=  (/) )
131130ralrimiva 2818 . . . 4  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  A. g  e.  (CauFil `  D ) ( J 
fLim  g )  =/=  (/) )
1321iscmet 22015 . . . 4  |-  ( D  e.  ( CMet `  X
)  <->  ( D  e.  ( Met `  X
)  /\  A. g  e.  (CauFil `  D )
( J  fLim  g
)  =/=  (/) ) )
1336, 131, 132sylanbrc 662 . . 3  |-  ( (
ph  /\  A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) ) )  ->  D  e.  (
CMet `  X )
)
134133ex 432 . 2  |-  ( ph  ->  ( A. f  e.  ( Cau `  D
) ( f : Z --> X  ->  f  e.  dom  ( ~~> t `  J ) )  ->  D  e.  ( CMet `  X ) ) )
1354, 134impbid2 204 1  |-  ( ph  ->  ( D  e.  (
CMet `  X )  <->  A. f  e.  ( Cau `  D ) ( f : Z --> X  -> 
f  e.  dom  ( ~~> t `  J )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367   A.wal 1403    = wceq 1405   E.wex 1633    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758   _Vcvv 3059    i^i cin 3413    C_ wss 3414   (/)c0 3738   |^|_ciin 4272   class class class wbr 4395    _I cid 4733   dom cdm 4823   -->wf 5565   ` cfv 5569  (class class class)co 6278   omcom 6683    ~~ cen 7551    ~<_ cdom 7552   Fincfn 7554   ficfi 7904   1c1 9523    < clt 9658    / cdiv 10247   NNcn 10576   2c2 10626   ZZcz 10905   ZZ>=cuz 11127   RR+crp 11265   ...cfz 11726   ^cexp 12210   *Metcxmt 18723   Metcme 18724   MetOpencmopn 18728   ~~> tclm 20020   Filcfil 20638    fLim cflim 20727  CauFilccfil 21983   Caucca 21984   CMetcms 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cc 8847  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-omul 7172  df-er 7348  df-map 7459  df-pm 7460  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fi 7905  df-sup 7935  df-oi 7969  df-card 8352  df-acn 8355  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-xneg 11371  df-xadd 11372  df-xmul 11373  df-ico 11588  df-fz 11727  df-fl 11966  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-clim 13460  df-rlim 13461  df-rest 15037  df-topgen 15058  df-psmet 18731  df-xmet 18732  df-met 18733  df-bl 18734  df-mopn 18735  df-fbas 18736  df-fg 18737  df-top 19691  df-bases 19693  df-topon 19694  df-ntr 19813  df-nei 19892  df-lm 20023  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-cfil 21986  df-cau 21987  df-cmet 21988
This theorem is referenced by:  iscmet2  22025  iscmet3i  22042  heibor1  31588  rrncms  31611
  Copyright terms: Public domain W3C validator