MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo2 Structured version   Unicode version

Theorem isclo2 18651
Description: A set  A is clopen iff for every point  x in the space there is a neighborhood  y of  x which is either disjoint from  A or contained in  A. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
isclo.1  |-  X  = 
U. J
Assertion
Ref Expression
isclo2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) ) )
Distinct variable groups:    x, y,
z, A    x, J, y, z    x, X, y, z

Proof of Theorem isclo2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 isclo.1 . . 3  |-  X  = 
U. J
21isclo 18650 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A
) ) ) )
3 eleq1 2501 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
z  e.  A  <->  w  e.  A ) )
43bibi2d 318 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( x  e.  A  <->  z  e.  A )  <->  ( x  e.  A  <->  w  e.  A
) ) )
54cbvralv 2945 . . . . . . . . 9  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  A. w  e.  y  ( x  e.  A  <->  w  e.  A
) )
65anbi2i 689 . . . . . . . 8  |-  ( ( A. z  e.  y  ( x  e.  A  <->  z  e.  A )  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  /\  A. w  e.  y  (
x  e.  A  <->  w  e.  A ) ) )
7 pm4.24 638 . . . . . . . 8  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  /\  A. z  e.  y  (
x  e.  A  <->  z  e.  A ) ) )
8 raaanv 3785 . . . . . . . 8  |-  ( A. z  e.  y  A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  <-> 
( A. z  e.  y  ( x  e.  A  <->  z  e.  A
)  /\  A. w  e.  y  ( x  e.  A  <->  w  e.  A
) ) )
96, 7, 83bitr4i 277 . . . . . . 7  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  A. z  e.  y  A. w  e.  y  ( (
x  e.  A  <->  z  e.  A )  /\  (
x  e.  A  <->  w  e.  A ) ) )
10 bibi1 327 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  <->  z  e.  A )  ->  (
( x  e.  A  <->  w  e.  A )  <->  ( z  e.  A  <->  w  e.  A
) ) )
1110biimpa 481 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  <->  w  e.  A
) )
1211biimpcd 224 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( x  e.  A  <->  z  e.  A
)  /\  ( x  e.  A  <->  w  e.  A
) )  ->  w  e.  A ) )
1312ralimdv 2793 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  y 
( ( x  e.  A  <->  z  e.  A
)  /\  ( x  e.  A  <->  w  e.  A
) )  ->  A. w  e.  y  w  e.  A ) )
1413com12 31 . . . . . . . . 9  |-  ( A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  ->  A. w  e.  y  w  e.  A ) )
15 dfss3 3343 . . . . . . . . 9  |-  ( y 
C_  A  <->  A. w  e.  y  w  e.  A )
1614, 15syl6ibr 227 . . . . . . . 8  |-  ( A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  ->  y  C_  A ) )
1716ralimi 2789 . . . . . . 7  |-  ( A. z  e.  y  A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  A. z  e.  y  ( z  e.  A  ->  y  C_  A )
)
189, 17sylbi 195 . . . . . 6  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  ->  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) )
19 eleq1 2501 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
2019imbi1d 317 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( z  e.  A  ->  y  C_  A )  <->  ( x  e.  A  -> 
y  C_  A )
) )
2120rspcv 3066 . . . . . . . . 9  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  ( x  e.  A  ->  y  C_  A )
) )
22 dfss3 3343 . . . . . . . . . . 11  |-  ( y 
C_  A  <->  A. z  e.  y  z  e.  A )
2322imbi2i 312 . . . . . . . . . 10  |-  ( ( x  e.  A  -> 
y  C_  A )  <->  ( x  e.  A  ->  A. z  e.  y 
z  e.  A ) )
24 r19.21v 2801 . . . . . . . . . 10  |-  ( A. z  e.  y  (
x  e.  A  -> 
z  e.  A )  <-> 
( x  e.  A  ->  A. z  e.  y  z  e.  A ) )
2523, 24bitr4i 252 . . . . . . . . 9  |-  ( ( x  e.  A  -> 
y  C_  A )  <->  A. z  e.  y  ( x  e.  A  -> 
z  e.  A ) )
2621, 25syl6ib 226 . . . . . . . 8  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( x  e.  A  ->  z  e.  A ) ) )
27 ssel 3347 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
x  e.  y  ->  x  e.  A )
)
2827com12 31 . . . . . . . . . 10  |-  ( x  e.  y  ->  (
y  C_  A  ->  x  e.  A ) )
2928imim2d 52 . . . . . . . . 9  |-  ( x  e.  y  ->  (
( z  e.  A  ->  y  C_  A )  ->  ( z  e.  A  ->  x  e.  A ) ) )
3029ralimdv 2793 . . . . . . . 8  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( z  e.  A  ->  x  e.  A ) ) )
3126, 30jcad 530 . . . . . . 7  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  ( A. z  e.  y  ( x  e.  A  ->  z  e.  A )  /\  A. z  e.  y  (
z  e.  A  ->  x  e.  A )
) ) )
32 ralbiim 2852 . . . . . . 7  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  ( A. z  e.  y  (
x  e.  A  -> 
z  e.  A )  /\  A. z  e.  y  ( z  e.  A  ->  x  e.  A ) ) )
3331, 32syl6ibr 227 . . . . . 6  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) ) )
3418, 33impbid2 204 . . . . 5  |-  ( x  e.  y  ->  ( A. z  e.  y 
( x  e.  A  <->  z  e.  A )  <->  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3534pm5.32i 632 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3635rexbii 2738 . . 3  |-  ( E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3736ralbii 2737 . 2  |-  ( A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
382, 37syl6bb 261 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713   E.wrex 2714    i^i cin 3324    C_ wss 3325   U.cuni 4088   ` cfv 5415   Topctop 18457   Clsdccld 18579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-iota 5378  df-fun 5417  df-fv 5423  df-topgen 14378  df-top 18462  df-cld 18582
This theorem is referenced by:  conpcon  27054
  Copyright terms: Public domain W3C validator